Carbon Dioxide Uptake by Vegetation After Emissions Shutoff “Now”

If all carbon dioxide emissions were immediately and permanently shut off in the year 2020 (with 417ppm of CO2 presently in the atmosphere), when would the natural uptake of CO2 by Earth’s vegetation (primarily, at first) bring the CO2 concentration down to its “ancient” level of 280ppm?; and when would the average global surface temperature return to its 1910 level (the “ancient” level, with 0°C of global warming)?

By a series of inferences based on my previous calculations of global warming, I estimate that the answers to the above questions are:

1,354 years to reach 280ppm (after an abrupt CO2 shutoff in 2020);

even so, the global temperature will rise another +2.75°C by 300 years (year 2320), remain there for a century (till year 2420), then slowly reduce to the point of 0°C of global warming (the temperature in 1910, used as my baseline for “ancient” pre-warming conditions) in the year 3374.

Figure 1, below, summarizes these findings.

FIGURE 1: CO2ppm/100 and Relative Temperature after 2020 shutoff

What follows is an explanation of how I arrived at these conclusions. It is an exercise of inductive reasoning that I present in a detailed manner for the benefit of the reader’s understanding of my logic, and to give the reader every opportunity to challenge the arguments I advance.

I proceed by making inferences from incomplete data at my disposal, linked as necessary by physical assumptions that are clearly stated, to eventually arrive at projected histories of CO2 concentration in the atmosphere, and the relative temperature (with respect to that of 1910), for the 1,354 years between 2020 and 3374.

Data on Earth’s Biomass

Humanity today comprises only 0.01% of all life on Planet Earth, but over the course of human history our species has destroyed 83% of wild mammal species. [1]

The world’s 7.6 billion people [in May 2018] represent just 0.01% of all living things. Yet since the dawn of civilization, humanity has caused the loss of 83% of all wild mammals and half of plants, while livestock kept by humans abounds. The new work cited is the first comprehensive estimate of the weight of every class of living creature and overturns some long-held assumptions. Bacteria are indeed a major life form – 13% of everything – but plants overshadow everything, representing 82% of all living matter. All other creatures, from insects to fungi, to fish and animals, make up just 5% of the world’s biomass. Farmed poultry today makes up 70% of all birds on the planet, with just 30% being wild. The picture is even more stark for mammals – 60% of all mammals on Earth are livestock, mostly cattle and pigs, 36% are human and just 4% are wild animals. Where is all that life to be found?: 86% on land, 1% in the oceans, and 13% as deep subsurface bacteria. [2]

I assume that “today” 7.7 billion humans are 0.01% of Earth’s biomass, and that the “average” human weighs 65 kilograms (kg), which is equivalent to 143.4 pounds (lb).

From this, the mass of humanity is estimated to be 5.0×10^11 kg, and the totality of biomass is estimated to be 5.0×10^15 kg.

The estimated totality of biomass can also be stated as 5,000 giga-metric-tons. A metric ton (tonne) is equivalent to 1,000 kg.

The following table lists the quantitative estimates made from the data (above) regarding the Earth’s biomass (the NOTES column in the table indicate assumptions made). Yes, there are gaps and imperfections in the table, which reflect the incomplete knowledge I begin with.

Mass of CO2 in the Atmosphere

The mass of Earth’s atmosphere is 5.2×10^18 kg.

To a good approximation, Earth’s atmosphere is made up of diatomic nitrogen (N2), at 79%, and diatomic oxygen (O2) at 21%. The molecular weight of an N2 molecule is 28 (atomic mass units); and the molecular weight of an O2 molecule is 32 (atomic mass units). A conceptual “air” molecule is defined as having a molecular weight that is 79% that of N2 plus 21% that of O2; that value is 28.8 atomic mass units (AMU).

A carbon dioxide molecule has a molecular weight of 44 atomic mass units (the carbon atom contributes 12 AMU, the two oxygen atoms contribute 32 AMU, combined). So, a CO2 molecule is 1.526x heavier than an “air” molecule.

The concentration of CO2 in the “ancient” atmosphere was 280ppmv (parts per million by volume). The mass (weight) of that ancient (original or baseline) quantity of atmospheric CO2 is thus:

(280ppmv) x (5.2×10^18 kg) x (1.525) = 2.22×10^15 kg.

The mass (weight) of the CO2 presently in the atmosphere (417ppmv) is estimated by a simple ratio:

(417ppm/280ppm) x 2.22×10^15 kg = 3.31×10^15 kg.

The difference between the masses of CO2 today, and in the “ancient” (pre 1910) atmosphere, is the “excess” CO2 driving global warming. The quantity is:

(3.31×10^15 kg) – (2.22×10^15 kg) = 1.09×10^15 kg.

That is 1,090 giga-tonnes.

A second route to estimating the mass of CO2 in the atmosphere is as follows.

Modeling of the huge CO2 spike that occurred 55.5 million years ago and that produced the Paleocene-Eocene Thermal Maximum (PETM) was described in [2], drawing on work cited in [3] and [4].

5,000 billion tonnes of carbon were quickly injected into the model atmosphere, producing a concentration of 2,500ppmv of CO2. The modeling showed the excess CO2 being cleared from the atmosphere by a variety of processes, down to a level of about 280ppmv by 200,000 years.

I interpreted the statements about this modeling, in both [3] and [4], to mean that 5,000 billion metric tonnes of carbon (which happened to be bound in carbon dioxide molecules) — but not 5,000 gigatons carbon dioxide — were injected into the model atmosphere.

The ratio of the molecular weight of carbon dioxide, to the atomic weight of carbon is 44/12 = 3.667.

The quantity of injected CO2 (2,500ppmv) in that model is then:

(3.667) x (5,000×10^9 tonnes) x (1,000 kg/tonne) = 1.834×10^16 kg.

By simple ratios I estimate the masses of CO2 at both 280ppmv and 417ppmv:

(280ppmv/2500ppmv) x (1.834×10^16 kg) = 2.05×10^15 kg,

(417ppmv/2500ppmv) x (1.834×10^16 kg) = 3.06×10^15 kg.

Note that by the first method of estimating these masses I arrived at:

2.22×10^15 kg, at 280ppmv,

3.31×10^15 kg, at 417ppmv.

The agreement between the two methods is heartening. So, continue.

Notice that the mass of CO2 per ppm is:

1.834×10^16kg/2500ppm = 7.34×10^12kg/ppm; equivalently 7.34giga-tonne/ppm.

Lifetime of CO2 in the Atmosphere

The modeling of the PETM described in [2], [3] and [4] showed that after about 10,000 years after the “quick” CO2 injection, the concentration had been reduced to about 30% of its peak level, so to about 750ppm.

This means that the mass of atmospheric CO2 was reduced by 12,840 giga-tonnes (from 18,340 giga-tonnes to 5,500 giga-tonnes) over the course of 10,000 years.

Assuming that this reduction occurred at a uniform rate (linearly) implies that the rate was -1.284 giga-tonne/year, or -1.284×10^12 kg/yr.

The Earth during the PETM (55.5 million years ago) and the Eocene (between 56 and 35 million years ago) was ice-free. The Arctic was a swamp with ferns, Redwood trees and crocodiles; and the Antarctic was a tropical jungle. The quantity of vegetation over the surface of the Earth must certainly have been at a maximum.

Roughly half of the CO2 injected into the model of the PETM atmosphere (mentioned earlier) was drawn out by a combination of photosynthesis, uptake by the oceans, and some dissolution of seafloor sediments (chalk deposits), by 1,000 years. About 30% remained at 10,000 years, and that was further reduced (to about 280ppm, or 11% of the 2,500ppm peak) by 200,000 years by the processes of weathering of carbonate rocks, and then silicate rocks.

If the linear reduction rate of -1.284 giga-tonnes/year (estimated for the first 10,000 years of CO2 reduction during the PETM) were operative for the next millennia or two, the excess 1,090 giga-tonnes of CO2 presently in the atmosphere could be cleared down to 280ppm within:

(1,090 giga-tonnes)/(1.284 giga-tonne/year) = 849 years.

However, since 13 million years ago Antarctica has been in a deep deep freeze; and the Arctic has also been a region of deep cold, ice, and minimal vegetation. Also, “since the dawn of civilisation, humanity has caused the loss of 83% of all wild mammals and half of plants.” [1]

So this combination of natural and anthropogenic reductions of Earth’s vegetation from it’s peak during the Eocene would mean that the process of extracting CO2 from the atmosphere by photosynthesis will be slower. For the moment, I assume at half the rate given earlier, or -0.642 giga-tonnes/year. At that rate, clearing the current CO2 excess (linearly) would take 1,698 years.

In [5] I described my model of how average global surface temperature can be influenced by the exponential decay of CO2 in the atmosphere, after an abrupt and permanent cessation of CO2 emissions. I call the time constant (parameter) used in the exponential function that models the longevity of CO2 in the atmosphere, it’s “lifetime.” In [5], I showed a number of post-shutoff temperature histories, each characterized by a specific value of the lifetime parameter, which in mathematical jargon is called the “e-folding time.” The exponential function is reduced to 36.79% of its peak value when the elapsed time is equal to the e-folding time (e^-1).

The case of the e-folding time being 10,000 years (in my model) has the excess CO2 cleared out of the atmosphere by 1,300 years after the abrupt shutoff of emissions (when global warming is at +1°C, as it is now). That “10,000 year case” is shown in Figure 3 of reference [5], and will be described further below.

It also happens that 10,000 years was found to be the time span required to reduce the CO2 concentration in the model PETM atmosphere to about 30% to 40% of its beginning peak value.

So, I infer that 10,000 years is a reasonable estimate of the lifetime parameter (e-folding time) for CO2 in the atmosphere, and that the present excess of CO2 in the atmosphere (417ppm – 280ppm = 137ppm) would be cleared — if there were an immediate and permanent cessation of emissions — within about 1,300 years, which is similar (in this speculative modeling) to the 1,698 years clearing time gotten by halving an estimated clearing rate during the PETM, above.

A linear rate of decrease of 137ppm over 1,300 years would be -0.11ppm/year (this number will be further refined below).

Reduction of excess CO2 concentration after Abrupt Shutoff
(given a 10,000 year e-folding parameter)

Using the “10,000 year case” post-shutoff temperature change history, just noted [5], the following is observed:

The global temperature relative to “now” (2020, at +1°C) is:

above +2.75°C, at 300 to 400 years (net >3.75°C),
above +2.4°C, at 212 to 550 years (net >3.4°C),
above +1.6°C, at 110 to 766 years (net >2.6°C),
above +1.0°C, at 55 to 900 years (net >2°C),
above +0.5°C, at 30 to 1,100 years (net >1.5°C),
above +0°C, at 0 to 1,100 years (net >1°C).

200 years after the temperature overshoot dips below +0°C (below the 1°C of global warming above “ancient” we have now), further cooling returns the global temperature to its level in 1910 (“ancient,” as used here). This is the behavior, over a span of 1,300 years, of the “10,000 year case” calculated in reference [5].

So, I assume that a CO2 “lifetime” of 10,000 years (e-folding time parameter) would result in a reduction of the atmospheric concentration of CO2 from 417ppm (“now”) to 280ppm (“ancient”) in about 1,300 years. That would be a 32.8% reduction of concentration down to a level of 67.2% of the present peak; a linear rate of decrease of 137ppm/1,300years = 0.105ppm/yr (this number will be further refined, below).

Earlier (above) I had found that the mass of CO2 per ppm is:

7.34×10^12kg/ppm, equivalently 7.34giga-tonne/ppm.

If so, then the weight of CO2 removed per year (at -0.105ppm/yr) is:

7.71×10^11kg/yr, equivalently 0.771 giga-tonnes/yr.

The present excess of CO2 is 1,090 giga-tonnes. Clearing it in 1,300 years would imply a uniform (linear) removal rate of 0.839 giga-tonnes/yr.

I will average the two estimates just given for the CO2 removal rate, to settle on:

0.805 giga-tonnes/yr = 8.05×10^11kg/yr

as the CO2 removal rate.

Earlier (above) I found the mass of the present excess of CO2 in the atmosphere to be 1,090 giga-tonnes. It would take 1,354 years to clear away that excess, given a uniform removal rate of 0.805 giga-tonnes/yr.

That reduction of 137ppm over 1,354 years implies a uniform rate of -0.1012ppm/yr.

Earlier (above) I found the total mass of Earth’s plants to be 4,100 giga-tonnes, equivalently 4.10×10^15 kg. The present excess of atmospheric CO2 (1,090 giga-tonnes) is equivalent to 26.6% of the present cumulative mass of all of Earth’s vegetation (plants). The uptake per year is equivalent to 0.0196% of the current total mass of Earth’s plants.

CO2 uptake occurs within the continuing carbon cycle of:

– carbon dioxide absorbed by plant photosynthesis,

– plants consumed as food by animals (heterotrophs),

– organic solids and wastes absorbed by the soil (decay, nutrients, peat, oil, coal),

– carbon dioxide absorbed by the oceans and used to make shells and corals,

– organic gases emitted to the atmosphere (like methane, CH4, which is soon oxidized to CO2 and water vapor),

– re-release of plant-bound carbon to the atmosphere by wildfires,

– mineralization of CO2 by the weathering of carbonate, and then silicate rocks

From “final” quantities and rates determined in all the above, the following projected histories of the reduction of CO2 concentration (in ppm), and global warming (average global temperature excursion above its level in 1910), after an abrupt cessation of CO2 emissions “now,” are determined and tabulated. This is my estimation of the 1,464 year global warming blip projected to occur between 1910 and 3374.


Figure 1, at the top of this report, is a graph of this table.

It is important to note that the conclusions of inductive reasoning — as is the case with this exercise — are viewed as supplying some evidence for the truth of the conclusion. They are not definitive as is the case with proofs by deductive reasoning.

In other words, I did the best I could with what I have. Only the unrolling of the future can supply us the definitive answers.


[1] Humans just 0.01% of all life but have destroyed 83% of wild mammals – study

[2] Ye Cannot Swerve Me: Moby-Dick and Climate Change
15 July 2019

[3] Global Warming 56 Million Years Ago, and What it Means For Us
30 January 2014
Dr. Scott Wing, Curator of Fossil Plants,
Smithsonian Museum of Natural History
Washington, DC

[4] CO2 “lifetime” in the atmosphere
National Research Council 2011. Understanding Earth’s Deep Past: Lessons for Our Climate Future. Washington, DC: The National Academies Press.
Figure 3.5, page 93 of the PDF file, page numbered 78 in the text.

[5] Global Warming and Cooling After CO2 Shutoff at +1.5°C
20 June 2020



Biosphere Warming in Numbers


Biosphere Warming in Numbers

At this time, the Biosphere is warming at a rate of 3.03×10^15 Watts, which is equivalent to a temperature rate-of-rise of 0.0167°C/year. The warming rate has been increasing steadily since the 19th century, when it was on average “zero” except for natural fluctuations (plus and minus) that were hundreds of times smaller than today’s warming rate.

The total energy use by the United States in 2019 was 100 quadrillion BTU (British Thermal Units), which is equivalent to 1.055×10^20 Joules. Averaged out over the 31,557,600 seconds in a year implies a use rate of 3.34×10^12 Watts during 2019.

From the above two observations, we can deduce that the current rate of Biosphere warming on a yearly basis is equivalent to the yearly energy use in 2019 of 907 United States of Americas.

The total increase in the heat energy of the Biosphere since 1910 is 5.725×10^24 Joules, with a corresponding increase of its temperature by 1°C. That heat energy increase over the last 110 years is equivalent to 54,260 years of U.S. energy use at its 2019 amount, per year.

So, today the Biosphere is warming at a rate equivalent to it absorbing the total energy used by the U.S. in 2019, every 9 hours and 40 minutes.

In 2008, I estimated the energy of a large hurricane to be 6.944×10^17Joules. [1] Thus, 152 such hurricanes amount to the same total energy as that used by the U.S. during 2019.

The heat energy increase of the Biosphere during 2019 was 9.56×10^22 Joules, with a corresponding temperature increase of 0.0167°C. That heat energy increase is the energetic equivalent of 137,741 hurricanes. Now, of course, that Biosphere heat increase during 2019 did not all go into making hurricanes, but it should be easy enough to see that a small fraction (for a whopping amount) went into intensifying the weather and producing more and stronger hurricanes (and consequent flooding).

Two clear observations from all this are:

– the Biosphere is warming at an astounding rate, even if “we don’t notice it” because we gauge it by the annual change in average global surface temperature (which is in hundredths of degrees °C per year);

– the immense amount of heat added to the Biosphere every year is increasingly intensifying every aspect of weather and climate, and consequently driving profound changes to all of Earth’s environments.

Those environmental changes directly affect habitability, and species viability, because they are occurring at a rate orders of magnitude faster than the speed at which biological evolution can respond to environmental pressures.

What should we do about it all?

That is obvious: ditch capitalism and socio-economic inequities worldwide; ditch all forms of bigotry, intolerance, racism, war and social negativity; form a unified planetary political administration for the management of a socialist Earth; deploy reasonable technical mitigation strategies (like drastic reductions in the use of fossil fuels, transforming the transportation infrastructure); implement very deep and comprehensive social adaptation behaviors (“lifestyle changes,” eliminating consumerism, scrupulously protecting biodiversity, resettlement of populations displaced by permanent inundation or uninhabitable drought and heat, worldwide sharing of food production).

None of this will actually stop global warming, as the amount of carbon dioxide already in the atmosphere (assuming it has a lifetime there of thousands of years [2]) has us programmed to warm by about another 1°C to 2°C within two centuries, even if we immediately and permanently shut off all our greenhouse gas emissions.

But, such an improved civilization would experience the least amount of suffering — which would be equitably distributed — from the consequences of advancing global warming; and it would contribute minimally toward exacerbating future global warming.


[1] The Energy of a Hurricane
5 September 2008

[2] Global Warming and Cooling After CO2 Shutoff at +1.5°C
20 June 2020


Long Term Worries Are A Luxury


Long Term Worries Are A Luxury

It is impossible to think about long term problems when you are in the midst of an emergency. Who can worry about the balance of their bank account, or who should get elected, or global warming, when they are in the middle of a medical emergency, or a police nightmare, or a flood, or just the “normal” worries of a homeless person looking for food for themselves or their children, and a safe place to get some badly needed sleep? And this situation is repeated by the billions around the world.

Because so many people are struggling to deal with their basic survival and personal security needs, which are under assault from so many directions by the forces of human malevolence: political, economic and racial, they have no mental capacity nor psychological reserves left to expend on long term worries like global warming. That long term worry is a luxury enjoyed by people who are fortunate in life, secure and safe, and even prosperous. They are also likely to be the kind of people who are in the most anthropogenic greenhouse gas emitting classes on Earth.

I consider global warming to be an emergency, exactly as Greta Thunberg has so brilliantly broadcast to the world. Many professional “Green” activists, bloggers, book writers and internet “influencers” have advanced a variety of social behavioral adaptation schemes, and technical schemes, that governments are urged to mandate and manage in order to “transition” our current profits-above-life-itself economies to a “post carbon” alternative energy mode. In general I agree with such ideas, but I realize they are just fantasies of luxurious long term worries (LLTWs). I suppose my Marxist friends would call LLTWs a class interest.

It has finally dawned on me that the route to real action on global warming climate change is through a complete social revolution that meets the immediate survival and security needs of the great mass of humanity, and which spectrum of aspirations is being vibrantly voiced through the worldwide George Floyd protests. A psychologist might phrase this as the need for a climb up the ladder of Maslow’s hierarchy of needs. The smaller the fraction of the world’s population that is overwhelmingly taxed by scrambling for their survival and safety needs, the larger the fraction of the world’s population that can begin to enjoy the LLTW of global warming climate change.

Because meeting those many aspirations for societal renewal and social transformation are technically the easiest and quickest remedies to begin addressing the root causes of the LLTW of global warming, they should be pushed for hard by everybody who gives a damn. Thus, the George Floyd protests are really for much more than just their essential and vitally important calls for anti-racist anti-capitalist and public health actions by governments, they are also the trumpet fanfares and bugle calls for a worldwide charge up the hierarchy of popular needs, from physical survival and personal security through societal reconstruction based on indiscriminate human dignity and the wide availability of opportunity that affords achievement of personal fulfillment, and ultimately up to us “all” having the luxury to worry about global warming, and then actually act on it.

I do not think there will ever be useful action on global warming until the social needs of the masses of humanity are vigorously and effectively attended to. This is not a utopian fantasy, this is realistic hard nuts logical thinking. The first and foundation step for everything that should follow is for all of us to actually become “we.”

So, yes, I realize that implies many wished-for political, economic and social revolutions and changes, but there it is. That is what “we” need to do if we want to make “anthropogenic” a positive adjective describing our stewardship of Planet Earth, instead of leaving it with its currently negative connotation regarding our massive fouling of the most beautiful jewel known to exist in the entire Universe.


Global Warming and Cooling After CO2 Shutoff at +1.5°C

I have done further analytical modeling of global warming, using the same general method described earlier (

The question addressed now is: what is the trend of temperature change after an abrupt shutoff of all CO2 emissions just as the net temperature rise (relative to year 1910) reaches +1.5°C, given the lifetime of CO2 in the atmosphere?

For this problem, it is assumed that when the temperature rise (relative to 1910) reaches ~+1.5°C, that:

– all greenhouse gas emissions cease;

– pollution grit (which scatters light) falls out of the atmosphere “instantly” (a few weeks);

– CO2 (greenhouse gas) concentration decays exponentially after emissions shutoff;

– for CO2 lifetimes [e^-1] in years: 20, 50, 100, 238.436, 500, 1,000, 10,000, 100,000;

– temperature sensitivities of cloud cover, ice cover and albedo are as in the previous model;

– all other fixed physical parameters are as in the previous model,

In general, for the 8 cases calculated, the temperature increases at a diminishing rate after the emissions shutoff, reaches a peak, then trends downward.

The longer the lifetime of carbon dioxide in the atmosphere, the later and higher is the temperature peak, and the longer it takes to cool back down to the baseline temperature of 1910, which is 1.5°C below the starting temperature for this problem.

The 4 figures below show the calculated results.

Figure 1: °C change vs. years after shutoff, for lifetimes: 20, 50, 100, 238.436 years.

Figure 2: °C change vs. years after shutoff, for lifetimes: 20, 50, 100, 238.436, 500, 1,000 years.

Figure 3: °C change vs. years after shutoff, for lifetimes: 238.436, 500, 1,000, 10,000 years.

Figure 4: °C change vs. years after shutoff, for lifetimes: 1,000, 10,000, 100,000 years.

It is evident from the figures that if the lifetime of carbon dioxide in the atmosphere is greater than 500 years, that a temperature overshoot above +2.0°C (relative to 1910) will occur before cooling begins.

If the lifetime of carbon dioxide in the atmosphere is greater than about 250 years, it will take over a century for the eventual cooling to reduce average global temperature to its baseline temperature (which is for 1910 in this model).

If the lifetime of carbon dioxide in the atmosphere is greater than 10,000 years, the temperature overshoot will take global warming past +4.0°C (above our 1910 datum) for hundreds to thousands of years, and cooling back down to the temperature at our datum would take millennia.

The clearing of carbon dioxide from the atmosphere is a slow process. The absorption of CO2 by the oceans, and the subsequent dissolution of seafloor sediments (acidifying the oceans) occur over decades to centuries. The uptake of carbon dioxide by weathering reactions in carbonate and silicate soils and rocks occurs over millennia to many tens of millennia.

It took about 200,000 years to clear away the CO2 that caused the +8°C to +12°C global warming spike that occurred 55.5 million years ago, which is known as the Paleocene-Eocene Thermal Maximum (PETM).

Beyond its intrinsic scientific interest, this study confirms what has long been known as the needed remedy: anthropogenic emissions of greenhouse gases must permanently cease as soon as possible in order to limit the ultimate extent and duration of unhealthy global warming.

My notes on the mathematical solution of this problem are available through the following link

Global Warming, CO2 Shutoff


Climate System Response Time

The parameter “beta” is a reaction rate, or frequency, or inverse response time of the biosphere and its climate system. By my calculation, that rate is 1.329×10^-10 seconds^-1, or 0.004194 years^-1, or a response time of 238.436 years. Of course I am not saying the precision of this estimate is as suggested by all the decimal places shown, it’s just that these are the numbers that come out of my calculations, and these numbers are kept to remind me of what choices I made to eventually arrive at this result.

The parameter beta is the product:

beta = (S•a1)/C = [S•(a-cloud – a-ice)]/C,


S = the insolation on the entire disc area of the Earth (1.7751×10^17 Watts),

a-cloud = the temperature sensitivity of the albedo because of the extent of cloud cover (1/°C),
for a positive quantity of: increase of albedo for a given temperature rise (5.715×10^-3 1/°C),

a-ice = the temperature sensitivity of the albedo because of the extent of ice cover (1/°C),
for a negative quantity of: decrease of albedo for a given temperature rise (1.429×10^-3 1/°C),

C = the heat capacity of the biosphere (5.725×10^24 Joules/°C).

A better determination of a-cloud and a-ice would improve the estimate of beta. I chose these quantities to be in the ratio of 4:1, as is the ratio between the cloud reflection portion of the albedo (24%) to the Earth surface portion of the albedo (6%) for the total pristine (pollution free, pre-global warming) albedo (30%).

So, beta incorporates physical parameters that characterize: solar energy, atmospheric and Earth surface reflectivity of light, and the thermodynamics of the mass of the biosphere.

Events and inputs to that Earth climate system are recognized and responded to on a timescale of 1/beta. Events and inputs with timescales less than 1/beta are blips whose impact will become evident much later, if they are of sufficient magnitude and force. Events and inputs of timescales longer than 1/beta are “current events” to the biosphere’s thermodynamic “consciousness,” and act on the climate system as it reciprocally acts on them over the course of the input activity.

Turning a large ship around takes advanced planning and much space because it’s large inertia tends to keep it on its original heading despite new changes to the angle of its rudder. Even more-so, changes in the direction of Earth’s climate, which may be sought with new anthropogenic rudder angel changes — like drastic reductions of greenhouse gas emissions — will require fairly deep time because of the immense thermodynamic inertia of that planetary system.

This means that the climate system today is responding to the “short time” impulses it was given over the previous two centuries or more; and that both the more enlightened and most stupid impulses that we give it today could take several human lifetimes to realize their full response. We are dealing with Immensity here, and our best approach would be one of respect and commitment.


Global Warming After 1.5°C Without Emissions

If greenhouse gas emissions stop just as the temperature rise (relative to 1910) reaches 1.5°C, what is the projected trend of temperature rise (or fall) after that point in time (year)?

If greenhouse gas emissions ceased entirely in the year 2047 (in 27 years), just as the relative temperature was nearly 1.5°C above that of 1910, then the subsequent trend of relative temperature would still be a rise but at a decreasing rate over time, and with an asymptote of 6.2877°C, which would essentially be achieved by the year 3160. Projections here are that for

year 2120 (in 100 years):
with same emissions rate after 2047, temperature rise = 3.2°C,
without any emissions after 2047, temperature rise = 2.75°C,

year 2185 (in 165 years):
with same emissions rate after 2047, temperature rise = 5°C,
without any emissions after 2047, temperature rise = 3.6°C.

The “no emissions” asymptotic temperature rise of ~6.29°C (by year 3160) would mean the average global temperature would be comparable to that of 55.5 million years ago at the very beginning of the upswing in temperature during the Paleocene-Eocene Thermal Maximum (PETM). The PETM began at a temperature about +4°C above that of our 1910 datum, and shot up to somewhere in the vicinity of +8°C to +12°C above it, and even possibly +16°C above it. It then took 200,000 years for the “excess” atmospheric CO2 to be cleared away by rock weathering, and the average global temperature to return to +4°C above our datum. This all occurred during the early Eocene geological epoch (which occurred between 56 to 33.9 million years ago).

In the post 2047 “no emissions” model used here, the albedo (the light reflectivity of the Earth) would still be higher than today because of increased reflective cloud cover, because of higher temperature.

Though the fallout of light-reflecting pollution grit would occur quickly in and after 2047, which is an albedo-reducing (warming) effect, it is not considered significant in relation to the reflective effect of the temperature-enhanced cloud cover (a cooling effect). The Earth’s albedo is dominated by cloud cover.

The temperature-enhanced reduction of ice cover (an albedo-reducing and thus warming effect) is always insignificant in comparison to the effect of cloud cover.

The infrared (heat) absorptivity (parameter F in the model) remains unchanged after 2047 because no new greenhouse gases are added to the atmosphere after that year (hypothetically), and because carbon dioxide (CO2) remains present in the atmosphere for a very long time (once the oceans are saturated with it), on the order of 150,000 years or more.

As noted previously (in “Living With Global Warming”), because of the immense thermal inertia of the biosphere and its climate system, the effect of an abrupt cessation of greenhouse gas emissions would come on slowly over the course of hundreds of years [an e-folding time of 240 years].

As will be evident from Figure 3, below, if we cared to limit temperature rise as much as possible for the sake of future generations, we could never cease emitting greenhouse gases too soon.

On the basis of the modeling described here, it seems impossible to ever limit the ultimate rise of temperature to below +2°C relative to 1910.

If we ceased all greenhouse gas emissions this minute in the year 2020, we might be able to keep the average global temperature from ever rising above +5.8°C, relative to 1910, in the distant future.

It will be interesting to see what the state-of-the-art supercomputer numerical models project as possible future “no emissions” temperature rises, as those models are further refined from today.

Technical Details

The technical details of how I reached these conclusions now follow. This discussion is a brisk and direct continuation of

Living With Global Warming
13 June 2020

For a description of the parameters used in my model, and their numerical values, see

A Simple Model of Global Warming
26 May 2020

The previous model of temperature rise relative to 1910 is called “example #5” because it was the 5th numerical example devised from the general solution of the relative temperature rate-of-change equation. For that model, at relative time =137 years (for year 2047, which is 137 years after 1910):

T = 1.4867°C, temperature rise relative to 1910,

A = 0.5226, albedo,

F = 0.5931, infrared (heat) absorptivity.

If greenhouse gas emissions cease entirely in year 2047 (at 137 years of relative time), then:

ap = 0, (grit pollution enhancement of albedo over time ceases),

fp = 0, (increasing greenhouse gas pollution enhancement of heat absorptivity over time ceases),

and the temperature change trend continues after t = 137years with:

T(at t=137) = 1.4867°C, (the “initial” relative temperature at t=137),

A = 0.5226 + 0.004286T, (albedo after t=137 is only dependent on relative temperature: clouds),

F = 0.5931, (heat absorptivity is unchanged after t=137, greenhouse gases persist, but none added),

alpha = 0.019919 °C/year, (new value),

beta = 0.004194 year^-1, (unchanged),

gamma = 0, (since strictly temporal increases/effects of pollution have ceased).

The relative temperature from t=137 on is now given by:

T(t≥137) = 1.4876°C + (4.801°C)[ 1 – exp(-0.004194[t-137]) ].

Figure 3: Relative Temperature Change after 2047 (1.5°C) w/o Greenhouse Gas Emissions

Note the following points on the “no emissions” relative temperature curve:

for t=210 (year 2120), T=2.75°C instead of 3.2°C,

for t=275 (year 2185), T=3.6°C instead of 5°C,

for t=1250 (year 3160), T=~6.28°C

The “no emissions” relative temperature curve after 1.5°C has an asymptote of 6.2877°C.


For descriptions of the PETM, see:

Paleocene-Eocene Thermal Maximum

Ye Cannot Swerve Me: Moby-Dick and Climate Change
15 July 2019


Living With Global Warming

I modeled mathematically the thermal imbalance of our biosphere, which we call global warming, so as to gain my own quantitative understanding of the interplay of the two major effects that give rise to this phenomenon. This is a “toy model,” an abstraction of a very complicated planetary phenomenon that teams of scientists using supercomputers have been laboring for decades to enumerate in its many details, and to predict its likely course into the future.

The result of my model is a formula for the history of the rise of average global surface temperature. The parameters of the model are ratios of various physical quantities that affect the global heat balance. Many of those physical quantities are set by Nature and the laws of physics. A few of those parameters characterize assumptions I made about physical processes, specifically:

the degree of increase in Earth’s reflectivity of light because of an increase of cloud cover with an increase of temperature,

the degree of decrease in Earth’s reflectivity of light because of a decay of ice cover with an increase of temperature,

the rate of increase in Earth’s reflectivity of light because of the steady emission of air pollution particles,

the rate of increase of the infrared radiation absorptivity — heat absorptivity — of the atmosphere because of the steady emission of greenhouse gas pollution.

The parameters for the four processes just mentioned were selected so that a calculated temperature rise history from 1910 to 2020 matched the trend of the data for average global surface temperature rise during that period. That average temperature rise was 1°C between 1910 and 2020.

The two major effects involved in the dynamics of the current global heat imbalance are: heating because of the enhanced absorptivity by the atmosphere of outbound infrared radiation — which is heat; and cooling because of the enhanced reflectivity of the atmosphere to inbound sunlight.

The biosphere is in thermal equilibrium — existing at a stable average global temperature — when the rate of absorbed inbound sunlight is matched by the rate of heat radiated out into space.


Greenhouse gases emitted into the atmosphere capture a portion of the infrared radiation — heat — rising from the surface of the Earth, and retain it. They are able to do this because the nature of their molecules makes them highly efficient at absorbing infrared radiation. The molecules involved are primarily those of carbon dioxide (CO2), water vapor (H2O), and methane (CH4).

This captured heat is then redistributed to the rest of the atmosphere by molecular collisions between the greenhouse gas molecules and the molecules of the major constituents of our air: nitrogen (N2) and oxygen (O2). The excess atmospheric heat evaporates more seawater, makes more clouds, drives stronger winds and causes more intense rainstorms — such as hurricanes, typhoons and tornadoes — and more frequent and severe flooding.

That excess atmospheric heat is gradually absorbed by the oceans, which as a unit is the most massive and heat retentive component of the biosphere. The biosphere encompasses: the atmosphere, the oceans, and the land surface down to a depth of perhaps 10 meters, below which the temperature variations due to the seasons and the weather do not penetrate significantly. The oceans are the “heat battery” of Planet Earth.

The biosphere naturally emits a portion of the greenhouse gases contained in the atmosphere, but humanity has been adding massively to that load, and at an increasing rate since the beginning of the 20th century. So, global warming is an anthropogenic — human caused — effect.

Natural emissions of greenhouse gases and aerosols include: evaporation from the surfaces of the oceans to form clouds; the ejection of sulfur dioxide gas (SO2) and ash particles by volcanic eruptions; the rising of smoke from wildfires with their loads of carbon dioxide gas and soot; the rising of windblown dust; and the bubbling up of methane gas from the rotting of organic matter on land and at the ocean bottom.

Anthropogenic emissions of greenhouse gases include: carbon dioxide gas (CO2) and soot particles from the combustion of liquid fossil fuels, coal, and biomass; and the emission of organic vapors like: methane from industrialized agriculture, mining, and oil and natural gas drilling; and ozone-depleting gases evaporated from cleaning fluids, solvents, and refrigerants.

Prior to significant anthropogenic emissions, there was a long-term balance between the natural emissions of greenhouse gases and aerosols, and their being rained-out and reabsorbed by the land and ocean surfaces. In particular, carbon dioxide gas is absorbed by green plants, which combine it with water to form sugar — used to supply the metabolic energy for plant growth, and of the animals that feed on plants — in a process called photosynthesis, and which is powered by sunlight.


About 30% of the sunlight incident on the Earth is reflected back into space. This light reflectivity by Planet Earth is called the albedo. Droplets of water in the atmosphere — often condensing around particles of soot, ash or dust — form into clouds, which are very efficient light reflectors, and are responsible for 24% of Earth’s reflectivity.

The other 6% of the Earth’s albedo is due to the overall light reflectivity of the surface of the Earth, which is the combined effect of reflections from the surfaces of the ice caps, oceans and lands. The rejection of a portion of the inbound solar light energy is a cooling effect.

The Earth’s albedo increases with a rise in the average global surface temperature, and with an increase in the load of aerosols in the atmosphere. Higher average temperature enhances evaporation and atmospheric humidity, creating more reflective cloud cover. A larger load of aerosols provides a greater number of light scattering particles to interfere with the influx of sunlight.

Aerosols tend to fall out and rain out of the atmosphere within a short period of weeks to months. So their contribution to the albedo — and thus to global cooling or “global dimming” — would be short-lived were they not being continuously replenished in the atmosphere by natural processes like the rainwater cycle, volcanic eruptions and wildfires; and by anthropogenic emissions of gas and aerosol pollution from the industrialized activities of civilization.

Despite the slightly greater cooling effect of Earth’s albedo being increased by the introduction of anthropogenic pollution that scatters light, the biosphere is steadily warming because the greenhouse gases also included in that anthropogenic pollution have the dominating influence.

The only way to slow global warming is to reduce — and ideally eliminate — anthropogenic emissions of greenhouse gas and aerosol pollution.

Temperature History, Past and Future

Figure 1 shows the average global surface temperature rise, relative to the temperature in 1910, for the 110 years between 1910 and 2020. This calculated history matches the trend of the observational data. The temperature rise shown in Figure 1 is 1°C. The Earth in 1910 was experiencing a spatially and temporally averaged global surface temperature that I take to have been 13.75°C (56.75°F). The Earth in 2020 is experiencing a spatially and temporally averaged global surface temperature that I take to be 14.75°C (58.55°F).

Figure 1: Average Global Surface Temperature Rise between 1910 and 2020
(°C of temperature rise vs. relative time in years)

Figure 2 shows the average global surface temperature rise, relative to the temperature in 1910, for the 210 years between 1910 and 2120. Obviously, the temperature history beyond 2020 is a projection, and it is based on a continuation of the same conditions — which are reflected in a constancy of the parametric values used in my model calculation for between 1910 and 2020 — beyond 2020 for another 100 years. This is a projection of the consequences of “business as usual.”

Figure 2: Average Global Surface Temperature Rise between 1910 and 2120
(°C of temperature rise vs. relative time in years)

Three points to be observed in Figure 2 are the temperature rises of:

1.5°C (2.7°F) by 2047 (in 27 years),

2.0°C (3.6°F) by 2070 (in 50 years),

3.2°C (5.76°F) by 2120 (in 100 years).

A temperature rise of 2°C has been declared as the must-never-exceed “redline” on our global thermometer because it is seen by the widest range of climate scientists, earth scientists, biologists, ecologists and evolutionary biologists, as a threshold beyond which the Earth’s climate would run away to conditions inimicable to human and non-human habitability and survival, without any possibility of alteration by human restraint or human action.

A temperature rise of 1.5°C has been declared as the realistic upper limit humanity could allow itself to tolerate if it still wished to slow the rate of subsequent global warming, by the drastic reduction of its anthropogenic emissions of atmospheric greenhouse gas and aerosol pollution.

Responsiveness of Earth’s Climate System

By my calculation, if magically all emissions of greenhouse gases and pollution grit ceased immediately today, it would take a minimum of 9,000 to 11,000 years for the excess 1°C in the biosphere to dissipate and thus return Earth to the climate we had for 10,000 years up to about 1910. The actual recovery time could be much longer. [This estimate is based on the thermal diffusivity of seawater.]

Because the Earth’s biosphere and its climate are immense systems with immense inertia, Earth’s recognition of our hypothetically abrupt cessation of greenhouse gas emitting, and Earth’s reaction to that cessation with a climatic response — a slowing of global warming — could take over 200 years to become noticeable. [This estimate is based on my calculated e^-1 exponential decay time of 240 years.]

The timescales of the planetary processes whose interactions produce climate are much longer than those of individual human attentiveness or of current societal preoccupations.

How Should We Respond?

The physics is clear, whether reflected by my simple analytical toy model, or by the immensely intricate state-of-the-art supercomputer numerical models by the many climate science institutes.

How global warming — as a complex of interrelated physical phenomena — will affect us can be estimated by climate scientists from their models. What we should do about the present and anticipated effects of global warming remains an open question that is beyond physics, and whose answer rests entirely on human choice.

What aspects of human and non-human life do we consider essential to protect and preserve? What degree of commitment are we willing to make to strategies for the continuation of civilization that require an equitable sharing of the new burdens imposed on human activity by increases of global temperature? In short, what kind of people do we want to be as we all live out our lives in a globally warming world?

It is easy to imagine many utopian or dystopian responses to global warming. We — as a species — are completely free to choose the type of cooperative or uncooperative collective future that we wish to inhabit, for as long as Planet Earth allows us to enjoy its hospitality.


If you wish to examine my global warming model for yourself, you can take a copy of it from:

A Simple Model of Global Warming
26 May 2020


Non-Violent Protest vs. Riot Violence, to Change Society

Grace Hudson sketched this amazingly subtle and detailed portrait of an expert Pomo basket weaver, and friend, with bitumen (which I think of as a coal/tar crayon).


Non-Violent Protest vs. Riot Violence, to Change Society

Some say: “Promote non-violent civil disobedience. Violence is hurting the George Floyd protests at this point.” Well, yes and no. Without violence the U.S. media won’t cover protests against our neoliberal paradigm and its occupation forces. Look at the Bernie Sanders campaign and his huge “unseen” rallies; and the large protest marches by Rev. William Barber’s Poor People’s Campaign, also “unseen.” “A riot is the language of the unheard” (MLK,Jr.).

By some Cheyenne accounts, when the U.S. Army of 1876 found the bodies of the dead 7th Cavalry soldiers at the Little Big Horn two days after the battle, General George Armstrong Custer’s eardrums would have been found to have been punctured (by two Cheyenne women) with awls so he could hear better in the next life. Custer (whose body was found with two gunshot wounds: one to his left chest and from which he had bled, and the other to his left temple and likely due to a post-mortem stray bullet), and the many American non-Indians like him, were so intransigently deaf to the cries of pain and pleas for peace and freedom from the Sioux, the Cheyenne, and all the other Indian nations and tribes, that the ear-piercing symbolism may rest on now-unrecoverable historical fact. That symbolism was certainly not recognized in 1876 nor heeded if it was, as the corralling of Indians and the murder of Crazy Horse in 1877, and the continuing Indian Wars all the way to the ‘final’ massacre at Wounded Knee in 1890, showed.

Non-violent protests and waiting for “inevitable” social change didn’t do anything for the American Indians between 1492 and 1890 (the American Indian population reached its nadir in 1900). So, I understand where violent protest can come from with some anti-Trumpers. But I think most of the tide of violence comes in from the right, from cops desperate to keep exerting their Custer-like dominance (for, what else have they got in life to feel “big” about, being mere enforcers just like the legally deputized Lincoln County Regulators of 1878 in New Mexico, and which Billy the Kid was a member of), and from Trump-allied provocateurs and violence-hero wannabes, and certainly also some assholes just taking advantage of disorder. All that surrounding and threatening violent agitation during these May-June protest marches, plus well-justified and long-standing grievances, push some protestors over the edge of polite behavior.

Remember that Trump — our illustrious genius president — has repeatedly called for violence by his goon squads because the idiot thought it would only be inflicted on an eternally cowering “untermensch” population that he despises, and that he could control that violence. Well, now he’s got his violence and it’s out of his control, and it doesn’t seem to be helping his reelection campaign. An increasing number of mainline Republican “intellectuals” are now openly calling for a Biden electoral near-sweep (of Trumpy ideologues only), which I guess means they are completely confident that Biden and the usual gang of DNC-Democrats are seen as reliably loyal partisans to the preservation of corporate capitalism, which is what they all really only care about anyway. So, they’re looking to Slow Joe as their savior-of-the-year for their precious neoliberalism.

I hate violence — with its resulting injuries, deaths and destruction — and never encourage any of it; but how else do the poor, oppressed, disorganized and unmilitarized “lower classes” (everywhere and throughout history) frighten their rich and disdaining overlords to get those Big Brother boot-heels off their necks, and give them decent chances of living in physical safety and economic security?

I think of the American Indians, the Palestinians, and the Jewish fighters of the Warsaw Ghetto Uprising in 1943 (against the Nazis, who were immune to non-violent protests) for historical perspective. You can also throw in the American Civil War to that list, because in essence we are still fighting it.

As many wise commentators have already said: the only redemptive outcome of riot violence today would be if it sparks the creation of a large, organized and self-sustaining mass social and political movement against the entire neoliberal regime (and takes it down!) — a substantial, continuing, non-violent and effective socio-political force that aims far beyond just cop-reforms, Trump-tumbling, and the electoral reining in of Republican politicians for a couple of years.

The riot injuries, deaths and destruction that Americans are suffering today are at best a societal forward payment — like a first month’s advanced rent deposit — before we get the chance to “move in” to a better paradigm of American society.

May the battles and bleeding in the streets stop as soon as possible, and the sweeping transformation (and rebirth) of our society commence immediately.

See also:

Thoughts on the George Floyd Riots
2 June 2020


On “Good Cops” and “Bad Cops”

I posted the following comments on a public access blog of a long-term policeman and high-level police instructor of arrest techniques, where he excoriated the Minneapolis cops who killed George Floyd, but also said that 99% of cops are good and he asked that the public not judge them all by the 1% who are bad. The classic “bad apples” pose. I replied as will follow. The Counterpunch article linked after these comments says it much better.

Well said, but…

99% of all cops are not good, it only takes a few minutes of viewing all the videos being posted from around the nation to see that. Doing research back through time (even only from Eric Garner forward) makes that impression worse. By eyeballing the videos, the proportion of bad cops seems very, very, very high.

“No one hates a dirty, piece of shit cop more than a good cop who does this job with honor and pride. I beg you, do not judge the 99% of good police officers based on the actions of an ignorant and evil few.”

I know you have to believe that – if you are a good cop – in order to be able to do a cop’s job (which is what? and for whom?) and not lose all sense of self-respect or go insane. But…

The most likely fate of “good police officers” who turn in “a dirty, piece of shit cop” is to get disciplined, fired or worse, for ‘betraying’ the cop fraternity, while the “dirty, piece of shit cop” goes on unperturbed and free to continue exerting dominance over and wreaking havoc on the public (the part of the public he/she is most prejudiced against). Look what happened to Serpico.

“A policeman’s first obligation is to be responsible to the needs of the community he serves … The problem is that the atmosphere does not yet exist in which an honest police officer can act without fear of ridicule or reprisal from fellow officers. We create an atmosphere in which the honest officer fears the dishonest officer, and not the other way around.” — Frank Serpico (in 2003).

So, it’s like opening a crate of oranges and seeing all the top ones moldy. You don’t think: ‘well, the bottom ones are probably okay, so I’ll take it.’ No, you throw them all away.

As another person said: if there are 10,000 good cops, and 10 bad ones, and the ten thousand good ones don’t kick out the bad ten, then you have 10,010 bad cops.

And finally, the municipalities and agencies that keep “dirty, piece of shit cops” on the payroll, and that do not prosecute them for their cop-crimes, are equally complicit in those crimes. They are the “institutions” of institutionalized racism and institutionalized oppression, and their cops are their bullying occupation troops stomping down on a victimized public.

The Fires This Time and Next
8 June 2020
John G. Russell


Sunshine Girl, and Good People

Nit’s Cafe is a small, wonderful Thai-themed restaurant in Fort Bragg.


Sunshine Girl

I saw the granddaughter of Jim Morrison and Janis Joplin today —
Beautiful girl —
Lives in Berkeley sometimes
Sometimes in Fort Bragg or Albion
Not sure what she does for a living
Maybe work part-time in Nit’s Cafe
But she’s a good singer
Makes up her own lyrics
Loves animals —
Feeds the hummingbirds
Has a pet skunk —
Not bad at gardening —
Trades with her tomatoes at the Farmers’ Market —
Even knows Spanish!
Said Zapata was an ancestor, it’s likely true
Said Santa Monica is like golf:
A Republican pig playpen
Lights incense to read
Rings a Tibetan bowl-bell when the Moon is full
Does her own math even, I’m impressed
Keeps bees I heard, earns her honey
Hikes the hills to see the hawks
Watches waves from the cliff
A tough cookie with a sweet disposition
Free spirit
Always fun when she’s around
Glad I lived long enough to know her

4 June 2020


Good People

I do not think it is fair to ridicule people of modest education and sophistication, who are otherwise good-hearted, right-thinking and right-acting. Wisdom is not the same as intelligence, which is not the same as education. Education is the product of opportunity, and thus usually an accident of birth; intelligence is a product of genetics, and thus a blameless accidental attainment; and wisdom is a product of rationality coupled with good character. It is rationality and good character that are essential to the making of a complete person, and to the making of a good society.

4 June 2020


Thoughts on the George Floyd Riots


Thoughts on the George Floyd Riots

Yesterday, a friend wrote me: “I really don’t know how we are going to come out of this. For a while I was okay. Over the last week I have grown more desperate with each day as the news develops.” I am trying to answer him here.

Many of my social media friends have expressed their anger, outrage, sadness and disgust at the lynching of George Floyd by a white supremacist cop in Minneapolis on May 25th (8 days ago as I write this). That lynching was carried out by an arresting cop kneeling for 8 minutes and 46 seconds on the right side of George Floyd’s neck while the handcuffed Floyd was lying face down on a city street. Floyd kept pleading for relief because he could not breathe, but the killer cop continued his kneeling choke-hold for 2 minutes and 53 seconds after Floyd had become unresponsive. Three other cops participated in the lynching: one holding Floyd’s back, another holding his legs, and the third looking on and preventing intervention by a person who stood nearby, watching in horror. (

The country has blown up, large protests and riots now fill the streets of many cities and towns in America, and have for the last week. “A riot is the language of the unheard,” as Martin Luther King, Jr. said about the expressions of that truth in 1965 (Watts, Los Angeles CA) and 1967 (Newark NJ, Detroit MI, and 157 other places). That truth again erupted into view in over 100 cities in the United States after Martin Luther King, Jr. was assassinated on 4 April 1968, with “the greatest wave of social unrest the United States had experienced since the Civil War,” before it finally flamed out on 27 May 1968. And that truth was again acted out during 6 days of riots (29 April to 4 May) in Los Angeles CA in 1992, after the four cops who had savagely beat Rodney King in 1991 were acquitted of any crime.

“We are witnessing America as a failed social experiment,” Dr. Cornell West said on 29 May, as he preached on CNN television with crystal clarity on the massive and systemic failure of America — as a society, an economy and a tangle of governments — to protect and defend all of its people. Listen to Cornell West for yourself to unflinchingly face the reality of America (, a reality that had been made plain by Malcolm X by 21 February 1965, when he was assassinated.

People are in the streets because the George Floyd murder was the last straw on their unbearably strained patience in waiting for justice in America. They blew up because they saw that justice in America will never arrive. Their many pent-up disappointments and frustrations came to a head on seeing the video of the George Floyd murder. Those disappointments and frustrations include experiences of victimization — many fatal — by racist policing, as well as economic victimization by a structurally racist and fundamentally rigged economy.

So, the victim populations of the race war against Blacks, Latinos, American Indians, and others disfavored by white supremacists; and the class war by the rich and powerful against: wage slaves, the unemployed, youth without prospects, and the 99% of Americans who are outsiders from the con games and self-aggrandizing capers of the economic insiders, just went ape-shit on seeing the Floyd murder and its obvious acceptability to the Trump-led bipartisan power structure. That is why I call it a lynching.

All this is happening during the COVID-19 pandemic, which has paralyzed society with its obvious deadliness, and that in turn has collapsed any hope of financial security for so many people who were already in the bottom tiers of the fundamentally heartless American economic system.

Many of these people are faced with sudden devastating losses: of health and life to the SARS-CoV-2 virus, and of being cast into bankrupting debt by the medical bills for having survived COVID-19; of confidence in remaining healthy while on jobs they need for economic survival; of income when their jobs disappear, and with it their health insurance if those jobs even provided it; of housing with the inability to pay rent; and even of ready access to food. The pandemic has also interfered with the most fundamental source of solace we all rely on in our times of despair: sharing the company of our families and true friends. So going out into the streets now to protest is natural for many who want relief from the unbearable suffocation of the choke-holds on them, and for some of those people who feel they have nothing left to lose, to even riot.

Unfortunately, there are rotten malevolent scumbag bigots who are taking advantage of the street protests to act violently and destructively in the hopes of provoking a much wider race war of oppression by white supremacy. And there are too many cops and government people (the cop employers) who are obsessed with control and domination instead of public and individual welfare, and they too create more hurt and provoke more reactive rioting by their heavy-handed cop-riot “law enforcement” actions.

So we get a vicious cycle of violence begetting violence. The best way to break that cycle is to quickly legislate substantive social and economic improvements that clearly address the underlying distresses of the people protesting visibly, and the people despairing silently and invisibly. The blinded-by-bigotry Trump-type people don’t want to enact those long-needed reforms because it would mean cutting back on their money-making schemes and their biased administrative actions.

I am guessing the current cycle of unrest will wind down simply because of exhaustion on the part of most of the people in the streets, coupled with heavy suppression by militarized police and federal troops. That won’t end the problem, but just make it more “invisible” to the authorities and simply delay its resolution, which if not forthcoming will simply mean another outbreak is inevitable.

I think things will get back to “normal” in time (within weeks?), but the “normal” that we had before late May was toxic. It carries within it the makings of more, longer and worse future riots if we let it return and continue unchanged.

A Bernie Sanders presidency aided by a helpfully supportive Congress would have been a potentially mild reform of our toxic “now,” but that reform was forbidden by the corporate-owned bipartisan power structure through its Democratic Party wing, with the full concurrence of its Republican Party wing. So now we have the George Floyd riots because people don’t feel like compromising any more, or of waiting for the Godot of American justice, or of turning the other cheek of a failed Christianity.

I don’t know and can’t really guess what’s coming next, or of how things will play out for the rest of this year.

We need a lot of wise leadership — which is obviously entirely lacking from the Trump Administration, from the U.S. Congress, and from many governors and elected politicians — and we need a lot of steady confident calmness that holds off from violent actions, by governors, mayors and police forces, who would in turn all be supported in that type of compassionately wise response by those wished-for intelligent and unbiased Federal authorities, for this national crisis to be calmed down quickly and humanely; and to then be permanently resolved by essential social and economic reform legislation, which was assiduously enforced thereafter.

The slogan “no justice, no peace” says it all. We’ve always known that, and the Kerner Commission Report spelled it all out after the riots in 1967 (, but it was ignored.

This crisis will be fixed for real when justice in America is established for real. I don’t know when or if that will ever happen. But I just wish it would soon.



For America today: shamrock = lily; Erin = Freedom.