Manuel García, Jr.’s Worldview, 2020

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Manuel García, Jr.’s Worldview, 2020

I am just over one-eighth of a billionth of humanity, and I think that the impact and value of my thoughts and ideas are about as significant. This year, 2020, I will be 70 years old, and I think that I have probably said everything original that I was capable of saying. I am sure that I will write more of my little essays, and put them out there, but they are more than likely to be repetitions and rehashes of what I have previously written. Right now I cannot imagine squeezing any new insights out of all the reading and studying (and living) I have done in physics, science, history, psychology, Buddhism, and literary fiction.

So, I have compiled a list of 20 of my essays (of recent years), which as a group I offer as representative of my “worldview,” as of 20 January 2020. I post that list here, “for the record,” and for the ‘benefit’ of people new to my web-pages. All of this represents my annual (in January) “state of the world” message.

I have no ego regarding my Internet publications; if they are useful and encouraging to you then great, if not then I think at least they have done no harm.

My plans are to continue absorbing things that interest me, learning as I can, and expressing myself as feels right and enjoyable. I am satisfied that at the very minimum I have improved just over one-eighth of a billionth of humanity.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Eight Categories, and Numbers of Articles in Each:

1 TRANSFORMING U.S. AND WORLD SOCIETIES (3)
2 CLIMATE CHANGE ACTION VERSUS CAPITALISM AND MILITARISM (4)
3 THE PHYSICAL REALITY OF GLOBAL WARMING (2)
4 WAR IS A CRIME, AND THE FOLLY OF WAR WITH IRAN (2)
5 POPULATION GROWTH + CLIMATE CHANGE + ENERGY USE (3)
6 CLIMATE CHANGE FACTS AT THE MOVIES (2)
7 THE TRUE PURPOSE OF A HUMAN LIFE (2)
8 HOW TO FACE THE FUTURE: ENJOY, AND BE KIND (2)

3+4+2+2+3+2+2+2=20

Article titles are within their respective web-links

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TRANSFORMING U.S. AND WORLD SOCIETIES (1/3)
https://manuelgarciajr.com/2019/04/09/whats-wrong-with-the-united-states/

TRANSFORMING U.S. AND WORLD SOCIETIES (2/3)
https://manuelgarciajr.com/2018/10/16/the-inner-dimensions-of-socialist-revolution/

TRANSFORMING U.S. AND WORLD SOCIETIES (3/3)
https://manuelgarciajr.com/2019/05/13/too-many-people-or-too-much-greed/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CLIMATE CHANGE ACTION VERSUS CAPITALISM AND MILITARISM (1/4)
https://manuelgarciajr.com/2018/11/19/climate-change-action-would-kill-imperialism/

CLIMATE CHANGE ACTION VERSUS CAPITALISM AND MILITARISM (2/4)
https://manuelgarciajr.com/2017/09/09/climate-change-denial-is-murder/

CLIMATE CHANGE ACTION VERSUS CAPITALISM AND MILITARISM (3/4)
https://manuelgarciajr.com/2019/06/27/american-climate-change-policy-you-dont-matter/

CLIMATE CHANGE ACTION VERSUS CAPITALISM AND MILITARISM (4/4)
https://manuelgarciajr.com/2019/11/20/climate-change-is-a-war-crime/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

THE PHYSICAL REALITY OF GLOBAL WARMING (1/2)
https://manuelgarciajr.com/2019/07/15/ye-cannot-swerve-me-moby-dick-and-climate-change/

THE PHYSICAL REALITY OF GLOBAL WARMING (2/2)
https://manuelgarciajr.com/2019/12/20/co2-and-climate-change-old-and-new/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

WAR IS A CRIME, AND THE FOLLY OF WAR WITH IRAN (1/2)
https://manuelgarciajr.com/2020/01/05/war-the-unending-theft/

WAR IS A CRIME, AND THE FOLLY OF WAR WITH IRAN (2/2)
https://manuelgarciajr.com/2020/01/05/attacking-iran-will-save-the-world-redux/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

POPULATION GROWTH + CLIMATE CHANGE + ENERGY USE (1/3)
https://manuelgarciajr.com/2019/06/02/our-globally-warming-civilization/

POPULATION GROWTH + CLIMATE CHANGE + ENERGY USE (2/3)
https://manuelgarciajr.com/2019/06/09/oil-population-temperature-what-causes-what/

POPULATION GROWTH + CLIMATE CHANGE + ENERGY USE (3/3)
https://manuelgarciajr.com/2019/06/09/linking-energy-use-and-human-development/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CLIMATE CHANGE FACTS AT THE MOVIES (1/2)
https://manuelgarciajr.com/2019/12/12/climate-from-catastrophe-to-cataclysm/

CLIMATE CHANGE FACTS AT THE MOVIES (2/2)
https://manuelgarciajr.com/2019/12/31/climate-change-at-the-movies/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

THE TRUE PURPOSE OF A HUMAN LIFE (1/2)
https://manuelgarciajr.com/2017/12/29/being-alive/

THE TRUE PURPOSE OF A HUMAN LIFE (2/2)
https://manuelgarciajr.com/2017/08/04/what-is-the-purpose-of-life/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

HOW TO FACE THE FUTURE: ENJOY, AND BE KIND (1/2)
https://manuelgarciajr.com/2015/12/11/living-confidently-in-times-of-climate-change/

HOW TO FACE THE FUTURE: ENJOY, AND BE KIND (2/2)
https://manuelgarciajr.com/2017/05/04/what-can-i-do-about-climate-change/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Why celebrate Greta Thunberg?

“So, why should we celebrate Greta Thunberg being named Time Magazine’s person of the year?”

Because she’s young (thus having a greater claim to “the future”), committed, absolutely correct about climate change, witheringly clear, endearingly free of emotionalism and self-promotion, and more effective at public advocacy and consciousness-raising about the need for profound and immediate socio-economic transformation than anyone else on the planet. How she did this is immaterial but the fact is it’s done and she’s using it to maximum advantage for her (and our?) cause. She’s on the cover of Time Magazine for the same reason Obama wanted to shake her hand, TV hosts want her on their shows, and UN conferences invite her to speak: because they all want to attach themselves to her authenticity to make up for the deficiencies of their own. Many people high, low, right, left and center are envious of her, and that envy merely illuminates the extent of their bullshit.

<><><><><><><>

Climate, from Catastrophe to Cataclysm

Australian wildfire, 2019
Image from Near Term Human Extinction Evidence Group

Image from Near Term Human Extinction Evidence Group

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Climate, from Catastrophe to Cataclysm

Please watch the 23 minute video, linked below, to completion. It shows an interview of Dr. Peter Carter (Director Climate Emergency Institute, IPCC expert reviewer, Co-author in 2018 of Unprecedented Crime: Climate Science Denial and Game Changers for Survival). This interview was conducted at COP25 (“this is set up to fail”) currently underway in Madrid, Spain, on 10 December 2019.

Peter Carter gives a vividly clear, trenchantly concise summary of the state of Earth’s climate; the increasing acceleration of all the phenomena that drive global warming climate change (carbon dioxide, methane and nitrous oxide emissions); the obdurate denial of the climate emergency, and the opposition to any action in response to it by the high carbon-emitting fossil fuel-loving nations: the United States, Russia, Kuwait and Saudi Arabia, at the very least. I would venture to guess that Australia, under its current reactionary Morrison Administration, would also join the objecting ‘carbonaholics’ despite it currently experiencing a mega-drought with massive and uncontrolled wildfires.

The average global temperature today is just under 1.4°C above its level during the years 1951 to 1980 (the baseline). The level in year 1000 coincided with the baseline. Between 1000 and the baseline years the temperature dipped to an average low 0.5°C below baseline, which extended from 1500 to 1800. All temperature fluctuations during the 800 years between 1000 and 1800 were well less than 0.5°C (plus or minus). Average global temperature has risen since 1980 at an average rate of 0.5°C every 14 years. Climate science has identified 1.5°C above baseline as the threshold between catastrophe to cataclysm; the threshold of 2°C above baseline, much publicized for over a decade as the “safe limit,” is actually over the redline of our climate change tachometer: “blown engine,” biosphere collapse.

The global carbon dioxide (CO2) level was between 275ppm and 285ppm (ppm = parts per million, 1 ppm is equivalent to 0.0001% by volume) between years 1000 and 1800. By 1900 it was 300ppm, rising increasingly rapidly since. Today’s CO2 concentration in the atmosphere is 415ppm, a level that last occurred 3 million years ago.

The global methane (CH4) level was between 650ppb and 700ppb (ppb = parts per billion) between years 1000 and 1750. The methane level has risen at an increasing rate since: from 700ppb in 1750 to 850ppb in 1900; and then zooming to over 1850ppb today. Methane is 86 times more potent a greenhouse gas than carbon dioxide. Peter Carter describes the massive explosion of methane emission that is occurring right now around Point Barrow, Alaska.

The global nitrous oxide (N2O) level was between 264ppb and 274ppb between years 1000 and 1880. Thereafter it zoomed at an increasing rate to 332ppb today.

Considering the mean sea level to have been at a baseline elevation in 1900 (which also coincided with its elevation in 1150, 1300, 1450 and 1800) its fluctuations about baseline between years 1000 and 1900 were limited to 8 centimeters (3.2 inches) above, and 3 centimeters (1.2 inches) below. Since 1900 the elevation of mean sea level has increased to almost 22 centimeters (8.7 inches) above baseline today; a steady average rate-of-rise of almost 2 centimeters per decade since the beginning of the 20th century.

Again, please watch the video to hear Dr. Peter Carter’s very important, concise and pungent summary of where our world is today regarding its climate change emergency: stepping out blindly from catastrophe into cataclysm.

Dr Peter Carter: summarising the lack of “climate emergency” at #COP25
[23:11]
10 December 2019
https://youtu.be/oa13KrOvE2s

Note

The numerical values given for CO2, CH4, N2O concentrations, and changes in global temperature and mean-sea-level, were read from charts published by the 2 Degrees Institute.

<><><><><><><>

From Caesar’s Last Breath To Ours

After the career: books donated in 2019.

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

From Caesar’s Last Breath To Ours

Human Life is a sexually transmitted planetary disease, Climate Change is the disinfectant that will cure it. (I’ll explain myself on this later.)

Sam Kean’s concluding 5 paragraphs, on CO2 in the atmosphere, from his book Caesar’s Last Breath (And Other True Tales of History, Science, and the Sextillions of Molecules in the Air Around Us, 2017, Back Bay Books, Little Brown & Co) are interesting, being a series of statements of long-known physical quantities. Since I studied “gas physics” for my graduate studies (in the 1970s), and I developed an interest in climate change at least by 2004 (when I published my first article on climate change), I’ve known the basic facts Kean commented on for quite some time.

In one of my technical books on gas physics (Introduction to Physical Gas Dynamics, by Walter G. Vincenti and Charles H. Kruger, 1965, John Wiley & Sons, NY) an example is given in which the authors illustrate the physical phenomena of gaseous diffusion by showing that the last breath expelled by Julius Caeser will have taken years to fully disperse in a homogenous manner throughout the earth’s atmosphere, and so each person ‘today’ would likely breath in, on average, 5 molecules of that last breath. One amazing feature of the example is that it shows just how many molecules there are in each cubic meter of air (at sea level and ‘normal’ temperature), 2.69×10^25 per meter^3 = 2.69×10^19 per cm^3. Vincenti and Kruger quote the following from James Jeans’ 1940 book An Introduction to the Kinetic Theory of Gases (Cambridge University Press):

“…, a man is known to breath out about 400 c.c. of air at each breath, so that a single breath of air must contain about 10^22 molecules. The whole atmosphere of the earth consists of about 10^44 molecules. Thus one molecule bears the same relation to a breath of air as the latter does to the whole atmosphere of the earth. If we assume that the last breath of, say, Julius Caesar has by now become thoroughly scattered through the atmosphere, then the chances are that each of us inhales one molecule of it with every breath we take. A man’s lungs hold about 2000 c.c. of air, so that the chances are that in the lungs of each of us there are about five molecules from the last breath of Julius Caesar.”

The average spacing between air molecules (at sea level, or “standard temperature and pressure” = STP) is about 3.3×10^-7 centimeters. Since air molecules travel at an average speed of 5×10^4 centimeters/second (at STP), and each such molecule travels an average distance of 6×10^-6 centimeters before colliding into another molecule (obviously whizzing by many others between collisions), the frequency of collisions per molecule is about 10^10 collisions/second, or about 10 collisions per nanosecond.

Each such collision will deflect the colliding molecules into new directions of travel, so it can take them a very long time to actually transport from Point A to Point B separated by global distances. One number bandied about by commentators on climate change (who at least halfway know what they’re talking about) is that it takes “30 years” for local CO2 emissions to begin having a “global effect” as part of global warming. This is basically the timescale of atmospheric homogenization by diffusion of the locally emitted plumes, because of course the individual CO2 molecules of such plumes are quite ready to absorb infrared radiation, and lose it as heat released to other air molecules during collisions (the actual mechanics of global warming) from the instant those CO2 molecules are formed.

A different indicator of atmospheric trace gas homogenization is that a uniform (independent of geographical location) quantity per unit mass of radioactive fallout absorption/take-up by trees was first measured (recently, from tree corings) to have occurred in late 1965. Radioactive fallout was first created in 1945, and the greatest number of atmospheric (and any) nuclear explosions, by far, occurred in 1962. Some geologists have now proposed labeling the beginning of the Anthropocene from late 1965, and calling that year the end of the Holocene (which is/was the current geological epoch, which began with the last glacial period/retreat approximately 11,650 years ago). “Anthropocene” because it is the first epoch in which human activity (anthropo) has a global geophysical impact; such impacts being worldwide nuclear fallout (as in the 1957 book and 1959 movie On The Beach), and anthropogenic CO2/greenhouse gas-driven global warming.

When I first wrote about global warming/climate change, it was out of this perspective as a gas physicist trying to explain the technical details to a lay audience. I soon learned that the audience was not only laying, but snoring. I was trying to prod “people” into action to forestall climate change by “greening” energy technology, since I was also an engineer focused on “energy” and “efficiency.” Plus I was hoping a huge public shift in this direction would open up some nice ($$$) job opportunities for me. But the snoozing audience just wants consumerism at the lowest common denominator level, and the Big Bosses just want bombs (and money for themselves). So no sweet high-tech green-physics job for me, but more firepower for the ‘criminalated’ psychopaths who are our guiding self-worshipping self-imagined Olympians, more gargantuan Black Friday tsunamis of electro-plastic garbage consumerism for the ‘amnesiatariat,’ and as a result giga-tons more carbonation of the atmosphere and acidification of the seas, and less viability for our planet with its growing human population.

Since “the human element” (mental inertia, ego, tribalism) always controls and limits the actualization of any technical enterprise by a group of people — like greening away from fossil fuels — it was quickly obvious to me that though most “solar energy” technologies were ancient and well-understood “we” were not going to give up fossil fuel convenience, wealth-generation and enablement-of-political-power in favor of green energy, and so consequently global warming could only increase. And it has, and will. So I write about climate change “for the art of it” and for personal satisfaction, in particular to put my views “on the record” for my children. But I can only fantasize, without belief, that such writing will have any practical political effect — of course I’d like it to, but I’m a realist. Happily, it’s always nice to hear every now and then from someone who already agrees with my views, that something I’ve written has given them some encouragement.

And that is where the arc of my climate change consciousness — from the science to our society — has brought me to today: human connection. Given that fossil fueled humanity is intransigent, and now the advance of climate change is implacable (“tipping points”), I see the best focus for most people’s limited energies beyond their immediate survival and family needs to be the developing of a consciousness of climate change and political reality, and a commitment to acting toward others at a minimum with benign neutrality and better yet with compassion, honesty and solidarity, so human society is generally improved and economically more leveled, regardless of the geophysical conditions under which it exists at any given time. For a society that is as deeply humane as I’ve suggested (and vastly different than today’s) then if and when we really do enter a rapidly accelerating “end time” our individual exits would be as decently humane as possible because they would be occurring within a societal death-with-dignity of a society of broad solidarity. I suppose this is kind of glum thinking, but maybe that’s an inevitable result of my growing ‘old’ in these times.

All this has been a rather prolix introduction to a video about climate change I thought you might enjoy. The Age Of Stupid is a 90 minute British documentary from 2009 (five years in the making) that remains brilliantly cogent about the “human element” driving the climate change geophysics, and is also refreshingly accurate about the physical details of that geophysics. [1] The Age Of Stupid Revisited is a 15 minute look back on the original documentary, from today. [2] Nothing has changed for the better; for the worse yes. Reflecting on this documentary, on the arc of my climate change consciousness, and on my belief (which I wish future reality would contradict) that there will never be any significant collective action to stop anthropo-exacerbation of climate change, and to also end poverty and to economically level national and world societies, I arrived at the rather tart characterization that: human life is a sexually transmitted planetary disease, and climate change is the disinfectant that will cure it.

Notes

[1] The Age of Stupid
2009
https://youtu.be/awVbLg59tR8

[2] The Age of Stupid revisited: what’s changed on climate change?
15 March 2019
https://youtu.be/GqHKYwxEIRA

<><><><><><><>

Ye Cannot Swerve Me: Moby-Dick and Climate Change

“Come, Ahab’s compliments to ye; come and see if ye can swerve me. Swerve me? ye cannot swerve me, else ye swerve yourselves! man has ye there. Swerve me? The path to my fixed purpose is laid with iron rails, whereon my soul is grooved to run. Over unsounded gorges, through the rifled hearts of mountains, under torrents’ beds, unerringly I rush! Naught’s an obstacle, naught’s an angle to the iron way!”
— Herman Melville (1819-1891), Moby-Dick, Chapter 37.

This is one of many passages, in Herman Melville’s 1851 novel, Moby-Dick, describing Captain Ahab’s monomaniacal obsession to hunt down and kill the white bull sperm whale whose name is the novel’s title. (1) Ahab sought vengeance for being scarred — with curved conical teeth up to 20 cm (8 in) long and weighing up to 1 kg (2.2 lb) each — from head to knee and having his leg torn off, against Moby Dick, who had fought off a pursuit by whalers led by Ahab on a previous voyage:

“Aye, Starbuck; aye, my hearties all round; it was Moby Dick that dismasted me; Moby Dick that brought me to this dead stump I stand on now… Aye, aye! it was that accursed white whale that razed me; made a poor pegging lubber of me for ever and a day!… and I’ll chase him round Good Hope, and round the Horn, and round the Norway Maelstrom, and round perdition’s flames before I give him up. And this is what ye have shipped for, men! to chase that white whale on both sides of land, and over all sides of earth, till he spouts black blood and rolls fin out.”

But Starbuck, the First Mate aboard their ship, the Pequod, was having none of it. Starbuck was a devout Christian, a Quaker, eschewing all violence except for the hot bloody rush of catching and killing whales to boil their blubber down to the fine oil that would fetch handsome profits at the Nantucket market. Starbuck objects to his commander’s private scheme hijacking the Pequod and her crew from “the business we follow… I came here to hunt whales, not my commander’s vengeance.” To Starbuck, Ahab’s obsession is not only a derailment of their business but even an affront to God, because Ahab is intent to avenge himself on Nature itself through its organic manifestation as this one mighty white whale:

“Vengeance on a dumb brute!” Starbuck replies to Ahab, “that simply smote thee from blind instinct! Madness! To be enraged with a dumb thing, Captain Ahab, seems blasphemous.”

As regards human activity, Starbuck was right, but we now know that sperm whales are intelligent animals, like all cetaceans, and not purely dumb brutes: they have both memory and intent. The sperm whale brain is the largest known of any modern or extinct animal, weighing on average about 7.8 kilograms (17 lb), more than five times heavier than a human’s, and has a volume of about 8,000 cm^3. The sperm whale’s cerebrum is the largest in all mammalia, both in absolute and relative terms. (2)

The story, Moby-Dick, is famous around the world and most people know that Ahab and all his crew except one, Ishmael, perished in a failed attempt to wreak Ahab’s vengeance, which even cost the sinking of the Pequod, stove in by Moby Dick’s ramming. The novel is much much more than merely its sea adventure plot, and description of 19th century whaling. It is a roving philosophical inquiry into the nature of character, faith and perception; as well as a metaphor for Melville’s ruminations on American democracy, which was shifting from a free association of agrarian ruralists to an increasingly industrialized regimentation of expansionist outlook. Melville’s Moby-Dick, along with Mark Twain’s Huckleberry Finn (1885), are the quintessential American novels (in my opinion, at least).

A key point in Moby-Dick is that the crew willingly joined into Ahab’s scheme, and despite Starbuck’s opposition to it. By rights, and whaling industry regulations and customs, the officers and crew of the Pequod were duty-bound to wrest control of the ship from Ahab because he was usurping the use of the vessel and its personnel for his private ends, and away from its intended purpose. The fully outfitted Pequod, bound on a three year hunting expedition, represented the investments of the owners and many shareholders, including widows and orphans of lost Nantucket whalers, as well the ongoing labor investments of the Pequod’s crew, which were to be paid out of the expected harvest of whale oil.

Maximizing that harvest was the whalers’ business, and it was intended to be pursued as a voluntary association of men into a hierarchical organization glued together by a commonality of personal financial interests. Ahab used his fearsome magnetic personality, like witchcraft, to steal the souls of his men and make them instruments for the implementation of his own personal hatred. Carl Gustav Jung (1875-1961), the great Swiss psychiatrist and psychoanalyst, made this exact diagnosis of Adolph Hitler (1889-1945) and the German nation under his dictatorship during 1933 to 1945. (3) That same diagnosis can be applied, in varying degrees, then and now, here and abroad, to many political “leaders.” The eternal question for the many laboring crews of the many workshops of this world — agrarian and industrial — is: do we work dutifully to the death, or till cast adrift as expendable, and do we willingly follow the leader to perdition if he is hellbound and determined for it; or do we rebel, overturn the structure of command, and lead ourselves even if such freedom entails a hard life?

And this brings me to global warming climate change: fossil fuels are the opiates in the addiction to war that would be the death of humanity by Planet Earth’s rejection of it.

Do we work dutifully to the death, or till cast adrift as expendable, and do we willingly follow the leader to perdition if he is hellbound and determined for it; or do we rebel, overturn the structure of command, and lead ourselves even if such freedom entails a hard life? Is humanity as a whole worth our individual pains in this effort? Or, is the idea of restructuring human civilization — and soon — to jettison capitalism, authoritarianism, and their enabling fossil-fueled militarism and marbling corruption, just a chimera that would use up our individual life forces to no avail; is it simply better to accept the inevitability of inequitable finalities and “Gather ye rosebuds while ye may,” as Robert Herrick (1591-1674) wrote? (4)

I, personally, rebel at this surrender because I see it as a betrayal of our young people, and an insult to our honor and to our fully liberated frontal lobe intelligence (though much of that is neglected and unused, I’ll grant) and our technical capabilities. But I don’t dismiss the question: I guess I’ve gotten old.

It has been 31 years since climatologist James E. Hansen, in testimony to the U.S. Congress in June 1988, made one of the first assessments that human-caused warming had already measurably affected global climate. Shortly after, a “World Conference on the Changing Atmosphere: Implications for Global Security” gathered hundreds of scientists and others in Toronto. They concluded that the changes in the atmosphere due to human pollution “represent a major threat to international security and are already having harmful consequences over many parts of the globe,” and declared that by 2005 the world should push its emissions some 20% below the 1988 level. (5)

Since then, basically, nothing substantive has been done by our governments to combat this existential threat. And today the reality of global warming climate change — the crisis of continuing existence — is known, viscerally, to everybody (even the liars).

Our geophysical problem is the slowing of the advance of global warming, by drastically reducing the rates of continuing accumulation in the atmosphere of carbon dioxide, methane, and other greenhouse gases (like volatile organic compounds, VOCs) whose aggregate heat-trapping mass could push Earth’s climate system past an unknown threshold or “tipping point,” triggering a sudden and catastrophic transition to climatic conditions significantly more hostile to human survival.

What may not be fully appreciated is that our geophysical problem may be far beyond human capabilities to ever be resolved even were humanity to metamorphose itself through a rapid social evolution producing a miraculous reformulation of human civilization into an enlightened temporal Nirvana liberally powered entirely by green energy.

Will climate change drive humanity to extinction? If so, how much time have we got?, and how will it happen? These questions are on the minds of many people today. In this essay, I will follow paleontologists deep into the geological past to see if it can offer any analogs to the evolving climatic conditions of today, and in that way give us a window into our future.

Average Global Surface Temperature History

The trend of average global surface temperature between 1900 and 2100 — relative to the average temperature during 1951 to 1980 (the “datum” for our temperature scales here) — is shown in the following figure (6).

Projections (colored lines), with uncertainty bounds of ±1 standard deviation (shading), for future surface temperature rise from models that use different economic scenarios. Scenario A2 (in red) represents “business as usual” where temperature is projected to rise by the end of the century between 2°C and 5.5°C if no effort is made to constrain the rise of CO2 concentration in the atmosphere, which by 2100 could range between 525ppm and 1000ppm (ppm = parts per million of the air volume). The solid bars at right indicate the best estimate (solid line) and possible ranges (grey shading) for each scenario. (6)

A view of this relative temperature history between 1880 and 2016 follows.

Notice that the temperature distance from the 1951-1980 average global surface temperature ranges from -0.8°C (1917) to +1.3°C (February 2016). Planet Earth today is about 1.5°C warmer than it was in the 19th century. What was the global surface temperature at earlier times?

Planet Earth has gone through many cycles of glacial and interglacial intervals over the previous 800,000 years. During those Ice Age climatic oscillations, the concentration of carbon dioxide gas (CO2) in the atmosphere cycled between about 170ppm and 300ppm, and temperature cycled between about +4°C and -10°C about our mean global surface temperature datum. (7)

Climate change during the previous 65 million years has been charted as follows. For the details of this image, see note (8).

The green trace shows oxygen isotope measurements (for the oxygen-18 isotope as a fraction of the oxygen present in the sample) on the stacked layers of carbonate (chalk) deposits down through the seafloor (obtained by core drilling), formed from the compacted shells of ancient foraminifera. Temperatures later than 13Mya (Mya = million years ago) are shown in the box at the lower right of the above image; the dashed horizontal line indicates the datum. Temperatures (relative to the datum) between 65Mya and 35Mya are shown in the box in the upper left of the image. Antarctica was glaciating, thawing and reglaciating between 35Mya and 13 Mya, and science has insufficient data to determine the temperature history for that complicated interval. (8)

Notice the little spike labeled PETM, at 56Mya in the image above. This is the Paleocene-Eocene Thermal Maximum, a very short-lived (200,000 years) high temperature excursion. The height of this temperature spike is likely underestimated by a factor of 2 to 4 because of the coarse sampling and averaging involved in this record.

At least since 1997, the Paleocene–Eocene Thermal Maximum has become a focal point of considerable geoscience research because it probably provides the best past analog by which to understand impacts of global climate warming and of massive carbon input to the ocean and atmosphere, including ocean acidification. Although it is now widely accepted that the PETM represents a “case study” for global warming and massive carbon input to Earth’s surface, the cause, details and overall significance of the event remain perplexing. (9)

Paleocene–Eocene Thermal Maximum (PETM)

The paleogeography of 56Mya was not that different from today; there was no ice at the poles, the Atlantic Ocean was not as wide as it is now, and India was only just beginning to collide with the rest of Asia. The climate during the Eocene Epoch (56Mya to 34Mya) was much warmer then today: Redwood trees grew in the Canadian Arctic, and the environment of that polar region looked like Okefenokee Swamp (straddling the state boundaries of present-day Florida and Georgia); mid-latitude continental interiors were warm through the winter, with giant palms growing in Wyoming and crocodiles ranging through the swamps and rivers. The poles remained ice-free during the entire interval spanning the Paleocene Epoch (66Mya to 56Mya) and the Eocene Epoch (56Mya to 34Mya).

The expected rise in average global surface temperature during the 90 years between 2010 and 2100 is like the rise in global temperature, going backwards in time, from ‘now’ to 35Mya: about 4°C to 5°C above the datum. “In just a few human lifetimes we’re going to change conditions in the atmosphere to a state that hasn’t been seen in 35 million years” commented Dr. Scott Wing (Curator of Fossil Plants, Smithsonian Museum of Natural History, Washington, DC) in his detailed lecture on the PETM. (10)

During the Paleocene, CO2 concentration in the atmosphere (also called “partial pressure”) was estimated to have been at 380ppm to 400ppm, and then rose to 800ppm just prior to the onset of the PETM (56Mya), producing a global temperature about 4°C warmer than our datum. The CO2 concentration then doubled or more to at least 1600ppm to 2000ppm within a few millennia at the start of the PETM, ‘quickly’ (in geological terms) producing an additional temperature rise of 4°C to 8°C.

Between 4,000 and 7,000 billion tons of carbon were injected into the atmosphere within the initial millennia of the PETM; the first (and biggest?) pulse lasting less than 2,000 years, and the emissions ending within 20,000 years. It would take the natural processes of CO2 removal 200,000 years to return the CO2 concentration and the global temperature to their levels prior to the onset of the PETM.

The amount of carbon injected into the atmosphere during the PETM is about the size of the carbon burp that would (will?) be realized by burning the entire fossil fuel reservoir humanity has at its disposal. However, the rate at which atmospheric carbon (CO2 and CH4) was emitted during the PETM is at least 10 times slower than today’s anthropogenic emissions! What may have taken 3,000 years during the PETM, we are accomplishing within 300 years; in fact 200 million years of fossil fuel accumulation has been burned in about 160 years.

The essential point here is that it will take 100,000 to 200,000 years to get back to the “normal” climate we left behind us in the middle of the 20th century. On this, Dr. Scott Wing commented: “The effects last for 200,000 years. So this is a global shift, which to a geologist looks like a transient change, like a perturbation, like a blip, but to any sane human it’s forever.”

Where did PETM carbon emissions come from? Science does not have a definitive answer, but its four estimates, ranked from most likely to least likely are:

— methane bubbling up out of warmed deep ocean methane hydrates (ice-like solids trapping methane, produced by microbes feeding on decaying organic matter, and formed in the cold and high pressure at the bottom of oceans) and then oxidizing in the atmosphere (CH4 combining with oxygen to produce CO2 and water vapor);

— extensive wildfires that included the burning of peat deposits (because the burning of all terrestrial vegetation alone would have produced insufficient carbon, so the burning of peat would also have been necessary);

— volcanic intrusions into organic-rich sediments at the floor of North Atlantic off Scandinavia (a region of very active volcanism at the time) cooking the sediments to release CO2 and methane;

— the warming and oxidation of any permafrost that may have remained, and it giving up lots of carbon.

It is possible that a combination of these four effects may have occurred.

All the soils formed in the Big Horn Basin of Wyoming during the 200,000 years of the PETM have been compacted to stacked layers of sediments 40 meters thick in total. During the PETM that region had a warm dry tropical climate; bean plants proliferated. Before and after the PETM the climate was temperate and bean plants were absent from the Big Horn Basin (at least in the respective fossil records). During the first 150,000 years of the PETM, warm climate plants (like beans) moved north even to the Arctic, and then retreated south during the last 50,000 years of the PETM, with temperate climate plants reappearing.

Plants growing in a high CO2 environment make less green pigment and have lower nutritive value, so plant eaters have to eat more to sustain themselves, or evolve to smaller sizes to reduce their metabolic requirements. Animals and insects did both during the PETM. Ancient horses first appeared in America at the very beginning of the PETM, and they ‘quickly’ shrank in size by about 30% — to the size of domesticated cats today. With the uptake of CO2 at the close of the PETM and the return to ‘normal’ Eocene conditions, this species of tiny horses increased in size by 76%. A similar shrinkage of body size during the PETM occurred for the other mammal species present at the time, including primates.

The four major scientific lessons of the PETM are:

— big emissions of carbon into atmosphere result in warmer climate and more acidic oceans, and that acid seawater dissolves deep marine chalk (and kills marine organisms living in the lower few kilometers of the oceans because dissolved oxygen has been scavenged — hypoxia — and because shell formation, for the protective casings required by many marine organisms, is impossible because of the acidity);

— there are self-reinforcing cycles of carbon release with increased temperature: CO2 and CH4 capture and retain heat and warm the atmosphere; that warms the oceans and results in intermittent rainfall on the continents (heavy rains with long dry spells between); that causes an abundant growth of vegetation, which parches during the droughts and dry spells and feeds wildfires releasing more CO2, heating the atmosphere and oceans further; that leads to the dissociation of marine methane hydrates, which release methane gas and heat the atmosphere and oceans even further; a sequence of vicious cycles;

— rapid global warming changed where plants and animals lived and how they interacted (this is affecting 21st century people, too), and drove rapid evolution in the body sizes (shrinkage) of mammals;

— and the effects last for 200,000 years because it takes Nature that long to clear out the excess CO2 from the atmosphere and oceans.

What brought the CO2 concentrations down and ended the PETM? The process of photosynthesis in growing plants pulled CO2 out of the air and bound it into nutrients (sugars, glucose, plant tissues), which partially migrated into animal tissues as food. CO2 was also absorbed by the surfaces of the oceans, and reacted at depth with carbonate compounds to dissolve the sea floor chalk and acidify the seawater. Over a longer term, 10% to 30% of the excess CO2 was removed by weathering reactions in soils, and the erosion by rain and streams of rocks imprisoning CO2 carried sediments back to the oceans, where they settled out on the sea bottom. Long after the time scale of the PETM, those seafloor sediments would be interred by subduction at tectonic plate boundaries.

Carbon uptake is slow. A computer simulation of the instantaneous dumping of 5,000 billion tons of carbon into atmosphere (producing an atmospheric concentration of 2,500ppm of CO2, by volume) showed that:

— roughly half of the CO2 comes out in first 1,000 years;

— 30% to 40% still remains at 10,000 years;

— and it isn’t all removed until after 100,000 years, so by about 150,000 to 200,000 years as occurred with the PETM.

A visual representation of CO2 uptake follows (11)

For a detailed description of the CO2 uptake processes, see note (11).

Similar computer modeling has been done for our climate future out to year 3000. Assuming that the entire fossil fuel reservoir is burned up by year 2100, injecting 5,000 billion tons of carbon into the atmosphere, the global temperature will rise to 4.5°C above datum by 2100 and remain there. Among the expected effects are a sea level rise of 1 meter by 2100, and 7.5 meters (25 feet) by year 3000 because the Greenland Ice Cap will have melted.

The major problem of having elevated global temperature for a long time — and it will be long since Nature takes “forever” to reabsorb atmospheric CO2 — is that major melting will eventually occur. As we are learning from direct observation today, that major melting may occur more rapidly than scientists were at first led to believe on the basis of their earlier computer modeling. If the Antarctic Ice Cap were also to entirely melt, sea level would be 66 meters (216 feet) higher in an ice-free world.

Could humanity today go on a furiously massive campaign to plant more trees and vegetation, so as to suck out excess CO2 from the atmosphere and stop global warming? No. We just can’t emplace enough plants to accomplish this, the rate of CO2 removal implied by this question is beyond the capability of Earth’s biosphere however lush. However, increasing the mass and area of vegetation (plants, trees) would slow the rates of CO2 accumulation and temperature increase, and help us lose ground (against the advance of global warming) less rapidly. So yes, plant!; it would also be a relief to wildlife sorely pressed with habitat losses.

Life in the Anthropocene

Geologists have recognized that we are now living in an epoch whose climate is fundamentally affected by human activity. That epoch has been termed the Anthropocene (12), and it was officially designated to have begun in the 4th quarter of 1965. (13)

“We have started the Anthropocene but the things that we think are untrammeled nature are already trammeled by us. There’s no eco-system on this planet that hasn’t had the human fingerprint on it some way or another. And many of the things that we think are beautiful and natural have already been modified by our ancestors, in ways that may not be obvious to us… What the Anthropocene perspective does is it helps us recognize that with [over] 7 billion people on the planet, and thousands of years, tens of thousands of years-long history already of modifying the planet, that it’s really too late to think about putting anything back the way it was,” Dr. Scott Wing.

I can think of 9 possible negative effects (mainly on human civilization) from severe global warming:

— reduced food production on land because of droughts and desertification, and a reduction of the nutritive value of crops because of high CO2 concentration;

— increased scarcity of fresh water, because of hot dry climatic conditions, intermittent rainfall, and huge population;

— the global spread of disease germs and usually tropical parasites, in a hotter world;

— loss of seafood with acidic seas, and increased starvation for animals and people;

— habitat losses for people, given significant coastal inundation and excessive heat and desertification in continental interiors;

— habitat losses for terrestrial wildlife as with humans, but also for marine life because of the reduced dissolved oxygen and increased acidity of the oceans;

— climate disaster-sparked mass migrations, which among humans will undoubtedly lead to clashes and even wars;

— resource scarcity wars (for basics like water, and for rarities like the semiconductor materials and metals essential to high tech electronics, and maybe in the extreme even for uranium deposits);

— increasingly heartless exclusion of the poor by the rich and powerful (a worldwide ‘Gazafication’ of the hapless poor).

We see some of each of these today, but the questions are: how much worse could it get?, and by when?

The development of human civilization over the last 10,000 years or so was aided by the benevolence of a very stable and moderate interglacial climate. In this new Anthropocene Epoch of increasing climate instability, we can anticipate major disruptions in human affairs, and given the socio-economic disparities and hostilities built into our human societies, we can anticipate the burdens of those disruptions to fall inequitably on poorer people. Misery will pushed down the gradient of wealth towards the destitute. In an extreme projection of pessimism, one could imagine conflicts of immiseration avoidance to devolve into extinction events, like a nuclear war.

However, the anticipated climate variations, like those of the PETM, will not in themselves be sufficiently extreme to force the actual physical extinction of humanity. In 7.95 billion years, when the Sun expands into a Red Giant star, then life on Planet Earth will be evaporated. But until such time, the most likely cause of a premature human extinction would be bad human behavior in response to the climate changes confronting humanity, and which we have caused.

It would be good for us to become familiar with how life is distributed in the Anthropocene, the epoch whose gallop we are spurring, so we can lead it more thoughtfully.

Humanity today comprises only 0.01% of all life on Planet Earth, but over the course of human history our species has destroyed 83% of wild mammal species. (14)

“The world’s 7.6 billion people [in May 2018] represent just 0.01% of all living things, according to the study. Yet since the dawn of civilisation, humanity has caused the loss of 83% of all wild mammals and half of plants, while livestock kept by humans abounds. The new work is the first comprehensive estimate of the weight of every class of living creature and overturns some long-held assumptions. Bacteria are indeed a major life form – 13% of everything – but plants overshadow everything, representing 82% of all living matter. All other creatures, from insects to fungi, to fish and animals, make up just 5% of the world’s biomass. Farmed poultry today makes up 70% of all birds on the planet, with just 30% being wild. The picture is even more stark for mammals – 60% of all mammals on Earth are livestock, mostly cattle and pigs, 36% are human and just 4% are wild animals.” Where is all that life to be found?: 86% on land, 1% in the oceans, and 13% as deep subsurface bacteria. (14)

One suggested marker for the Anthropocene are the bones of domestic chickens, which are now ubiquitous around the globe. The marker recognized has having achieved complete coverage over the surface of Planet Earth by late 1965 is radioactive fallout from atmospheric atomic and nuclear bomb explosions.

Our Challenge

Remember that the biggest threat to humanity’s survival is anti-social human behavior; climate change alone can’t kill us.

If we choose to experience our present and future of changing climate as a competitive war game — with actual killing and willful destruction — to gain class, factional and ideological advantages in terms of physical security, habitability, food production, natural resource availability, standard of living and social status (ego gratification), then that species-wide dysfunctional response could ultimately lead to a collapse of civilization, and at its worst to a global nuclear war and then actual human extinction.

If we choose to experience our present and future of changing climate as an intellectual challenge to human ingenuity for technical innovation, and as a moral challenge for social organization and for the elimination of socio-economic disparities, then such a species-wide response would improve the human condition regardless of the degree of future climate variability and the geographical distribution of its effects on habitability.

Regardless of what we do or don’t do, the climate will change in ways governed by majestic and interlocking geophysical cycles spanning millennia. Our individual and species-wide experiences of living within this implacable reality will be set by how we choose to interact with each other. Nirvana or perdition are choices entirely within our grasp.

Many will say that obviously climate change as competitive war game is the only realistic alternative because it requires no behavioral changes from our over 10,000 years of “civilized” human history, and because eco-socialism is pure utopianism and thus beyond all realistic actualization. And of course, eco-socialism is impossible in a world of Ahabs and fanatical Ahab followers. But all that is just an excuse to continue with bad behavior. There are no actual physical or biological constraints preventing people from choosing to associate in an eco-socialist manner. The current societal improbability for deeply cooperative behavior does not make future species-wide collective cooperation an impossibility. Responding to climate change could provide a framework on which to build such a species-wide socialist civilization.

So, how would I respond to the Ahabs out there who would tell me: “Everything you say is wrong! God is White! Trump is Christ! Capitalism is Salvation! Ye cannot swerve me!” From me: You can’t accept it because then you wouldn’t be the person you are. You can’t learn if you are unwilling to change. And that, ultimately, is what climate change will be for us: a challenge to learn.

And finally, Nature to Ahab: Ye cannot swerve me! Your world may return in 200,000 years.

Notes

(1) Herman Melville, Moby-Dick or, The Whale, (1851), Penguin Books, 1992.

(2) Sperm Whale,
https://en.wikipedia.org/wiki/Sperm_whale

(3) Carl Gustav Jung, C. G. Jung Speaking: Interviews and Encounters, Princeton University Press, 21 February 1987, edited by: William McGuire and R. F. C. Hull; “Diagnosing the Dictators” 1938, pages 115-135; “Jung Diagnoses the Dictators” 1939, pages 136-140; (dictators = Hitler, Stalin Mussolini).

(4) “To the Virgins, to Make Much of Time,” (Robert Herrick)
https://en.wikipedia.org/wiki/To_the_Virgins%2C_to_Make_Much_of_Time

(5) History of climate change science
https://en.wikipedia.org/wiki/History_of_climate_change_science

(6) Global Surface Temperature, 1900-2100
(relative to 1951-1980 average global surface temperature)
National Research Council 2011. Understanding Earth’s Deep Past: Lessons for Our Climate Future. Washington, DC: The National Academies Press.
Figure 1.1, page 35 of the PDF file, page numbered 20 in the text.
Figure 1.1 SOURCE: IPCC (2007, Figure SPM.5, p. 14).
https://doi.org/10.17226/13111

(7) Global view answers ice age CO2 puzzle
April 4, 2012 — andyextance
https://simpleclimate.wordpress.com/2012/04/04/global-view-answers-ice-age-co2-puzzle/

The 800,000 year record of atmospheric CO2 from Antarctic ice cores, and a reconstruction of temperature based on hydrogen isotopes in the ice. The current [2012] CO2 concentration of 392 parts per million (ppm) is shown by the blue star. Credit: Jeremy Shakun/Harvard University

(8) 65 Million Years of Climate Change
(wikipedia, 13 July 2019)
https://commons.wikimedia.org/wiki/File:65_Myr_Climate_Change.png

This figure shows climate change over the last 65 million years. The data are based on a compilation of oxygen isotope measurements (δ18O) on benthic foraminifera by Zachos et al. (2001) which reflect a combination of local temperature changes in their environment and changes in the isotopic composition of sea water associated with the growth and retreat of continental ice sheets.

Because it is related to both factors, it is not possible to uniquely tie these measurements to temperature without additional constraints. For the most recent data, an approximate relationship to temperature can be made by observing that the oxygen isotope measurements of Lisiecki and Raymo (2005) are tightly correlated to temperature changes at Vostok as established by Petit et al. (1999). Present day is indicated as 0. For the oldest part of the record, when temperatures were much warmer than today, it is possible to estimate temperature changes in the polar oceans (where these measurements were made) based on the observation that no significant ice sheets existed and hence all fluctuation in (δ18O) must result from local temperature changes (as reported by Zachos et al.).

The intermediate portion of the record is dominated by large fluctuations in the mass of the Antarctic ice sheet, which first nucleates approximately 34 million years ago, then partially dissipates around 25 million years ago, before re-expanding towards its present state 13 million years ago. These fluctuations make it impossible to constrain temperature changes without additional controls.

Significant growth of ice sheets did not begin in Greenland and North America until approximately 3 million years ago, following the formation of the Isthmus of Panama by continental drift. This ushered in an era of rapidly cycling glacials and interglacials.

Also appearing on this graph are the Eocene Climatic Optimum, an extended period of very warm temperatures, and the Paleocene-Eocene Thermal Maximum (labeled PETM). The PETM is very short lived high temperature excursion possibly associated with the destabilization of methane clathrates and the rapid buildup of greenhouse gases in the atmosphere. Due to the coarse sampling and averaging involved in this record, it is likely that the full magnitude of the PETM is underestimated by a factor of 2-4 times its apparent height.

(9) Paleocene–Eocene Thermal Maximum (PETM)
https://en.wikipedia.org/wiki/Paleocene%E2%80%93Eocene_Thermal_Maximum

(10) Global Warming 56 Million Years Ago, and What it Means For Us
30 January 2014
Dr. Scott Wing, Curator of Fossil Plants,
Smithsonian Museum of Natural History
Washington, DC
[1:44:12]
https://youtu.be/81Zb0pJa3Hg

(11) CO2 “lifetime” in the atmosphere
National Research Council 2011. Understanding Earth’s Deep Past: Lessons for Our Climate Future. Washington, DC: The National Academies Press.
Figure 3.5, page 93 of the PDF file, page numbered 78 in the text.
https://doi.org/10.17226/13111

CO2 Sweepers and Sinks in the Earth System
The carbon fluxes in and out of the surface and sedimentary reservoirs over geological timescales are finely balanced, providing a planetary thermostat that regulates Earth’s surface temperature. Initially, newly released CO2 (e.g., from the combustion of hydrocarbons) interacts and equilibrates with Earth’s surface reservoirs of carbon on human timescales (decades to centuries). However, natural “sinks” for anthropogenic CO2 exist only on much longer timescales, and it is therefore possible to perturb climate for tens to hundreds of thousands of years (Figure 3.5). Transient (annual to century-scale) uptake by the terrestrial biosphere (including soils) is easily saturated within decades of the CO2 increase, and therefore this component can switch from a sink to a source of atmospheric CO2 (Friedlingstein et al., 2006). Most (60 to 80 percent) CO2 is ultimately absorbed by the surface ocean, because of its efficiency as a sweeper of atmospheric CO2, and is neutralized by reactions with calcium carbonate in the deep sea at timescales of oceanic mixing (1,000 to 1,500 years). The ocean’s ability to sequester CO2 decreases as it is acidified and the oceanic carbon buffer is depleted. The remaining CO2 in the atmosphere is sufficient to impact climate for thousands of years longer while awaiting sweeping by the “ultimate” CO2 sink of the rock weathering cycle at timescales of tens to hundreds of thousands of years (Zeebe and Caldeira, 2008; Archer et al., 2009). Lessons from past hyperthermals suggest that the removal of greenhouse gases by weathering may be intensified in a warmer world but will still take more than 100,000 years to return to background values for an event the size of the Paleocene-Eocene Thermal Maximum (PETM).

In the context of the timescales of interaction with these carbon sinks, the mean lifetime of fossil fuel CO2 in the atmosphere is calculated to be 12,000 to 14,000 years (Archer et al., 1997, 2009), which is in marked contrast to the two to three orders of magnitude shorter lifetimes commonly cited by other studies (e.g., IPCC, 1995, 2001). In addition, the equilibration timescale for a pulse of CO2 emission to the atmosphere, such as the current release by fossil fuel burning, scales up with the magnitude of the CO2 release. “The result has been an erroneous conclusion, throughout much of the popular treatment of the issue of climate change, that global warming will be a century-timescale phenomenon” (Archer et al., 2009, p. 121).

(12) Anthropocene
https://en.wikipedia.org/wiki/Anthropocene

(13) The Anthropocene’s Birthday
https://manuelgarciajr.com/2018/02/23/the-anthropocenes-birthday/

(14) Humans just 0.01% of all life but have destroyed 83% of wild mammals – study
https://www.theguardian.com/environment/2018/may/21/human-race-just-001-of-all-life-but-has-destroyed-over-80-of-wild-mammals-study

<><><><><><><>

 

2° Institute
https://www.2degreesinstitute.org/

data sources for charts below
https://www.temperaturerecord.org/#sources

<><><><><><><>

Oil, Population, Temperature, What Causes What?

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Oil, Population, Temperature, What Causes What?

In statistics, correlation is not proof of causation. Causation between coincidences has to be established by deeper investigation. Three trends that are tightly coincident, between the years 1960 to 2025, are: the increase in global population above its 1953 total of 2.7 billion (2.7B), the accumulated petroleum production since 1900 (in giga-barrels, Gb), and the increase in average global temperature, T, above a baseline of 14.7 degrees Centigrade (T – 14.7C).

No one, except lying hypocritical ideologues, denies that causal links exist between these three trends, but what are they? Let’s explore the possibilities.

P1: Increases in oil production could cause increasing population and global warming.

P2: Increases in population could cause more oil production and global warming.

P3: Increases in global warming could cause increases in population and more oil production.

Possible causal links in P1 are: fossil fuel energy made available through continuing oil production could support human reproductive activity and the increase of existing families, and it could support and expand existing industrial activity that emits carbon dioxide (CO2) and methane (CH4) gases.

Possible causal links in P2 are: the genetically programmed impulse to gather all resources possible in order to reproduce as much as possible could cause the continuation of oil production to garner fossil fuel energy, and it could cause global warming by expanding the mass of CO2 exhaling human life.

Possible causal links in P3 are: the increase in the temperature of the biosphere could cause continuing and expanded human reproductive activity, and the continuing production of oil.

Because the biosphere is not heating up independently of human activity, we can dismiss P3. This dismissal would only be argued against by lying hypocritical ideologues, who are irrelevant to the good of humanity and Planet Earth, so we ignore them and move on.

We are left then with oil production (P1) and population growth (P2) as fundamental drivers of global warming. Still to determine is whether oil production fuels population growth, or population growth spurs oil production, and we can suspect that they amplify each other.

Homo sapiens are one species of life on Planet Earth, and they are also one variety of primates. Since the inception of the species over 2,000 centuries ago, a sole human being without any other support has had little chance of survival, and this was also true of humanity’s precursor primate species.

All living creatures have an instinct to survive, and the strongest outlets for that instinct are: finding food and water, securing shelter and defending territory, and reproducing. Territory is defended because it offers food and water gathering and reproductive opportunities. One strategy for individual survival is to associate in groups that cooperate for mutual survival: families, packs, herds, monkey troops, clans, and human societies. Racism among humans is a degeneration of this survival strategy.

Family is the most reliable — and most genetically linked — association an individual can form to support their survival. This is why the urge to reproduce is innate, and that is why Life on Earth continues.

A larger family provides the individual with more loyal associates for water and food gathering, for defense against predators, and for protection and care when aged and ill. For individual humans, this primitive survival strategy becomes more important the less they have social welfare networks and social welfare societies to rely on.

The purpose of social welfare societies — socialism — is to provide its individuals with sufficient quantities of water, food, shelter and energy to carry on fulfilling lives, without subjecting those individuals to lonely struggles for precarious survival. This is why mortality rates are lowest in highly socialized prosperous societies, and why the consensus of individuals living in them is for low rates of reproduction, even to the point of birth rates below 2.1 per woman, the replacement rate necessary to maintain the existing size of a society’s population. It is entirely logical for individuals living without reliable socialized guarantees of getting sufficient access to water, food, shelter and energy to conduct safe and decent lives, to procreate larger families. This is why population growth is greatest among the poorer people on Earth, whether in the Industrialized Societies, the Developing World, or the impoverished Third World.

Clearly, the single best strategy to slow, and perhaps even reverse global population growth, is to provide a global system of reliable socialized security to completely support individual healthcare for life, obviously including: maternity care; safe birthing; safe abortion; child survival, healthcare, education and launching into “independent” living; elder care; and humane natural and self-willed dying. There is simply less incentive to have more children if more of them are guaranteed to survive and experience full and decent lives, and if the individual has a socially guaranteed protection of their own survival.

So, failure to provide reliable socialized protection for individual survival amplifies the innate urge to procreate, which then fuels a population explosion, whose consequence is continued global warming: because of a continuing and expanded use of fossil fuel energy that is very inequitably controlled and shared out; and because of a larger mass of humanity exhaling carbon dioxide gas (CO2), creating organic wastes that emit methane (CH4), and then these two entering geophysical positive feedback loops that amplify such subsequent emissions.

However, the population explosion alone — which is concentrated among Earth’s darker and poorer people — is not the sole cause of global warming. The continuing and expanded drive by individuals to acquire fossil fuel energy in order to accumulate more personal wealth, more personal power, more social status, and more ego gratification, is the other — and I think predominant — fundamental cause of global warming. As already noted, the control and exploitation of fossil fuel energy is very inequitably shared. Rich and politically powerful countries and individuals have overwhelming control over fossil fuel energy resources, and they are in the best positions to exploit those resources for their own aggrandizement. This is pure capitalism. Those of our fellow homo sapiens primates who are “left out” of wealth society’s fossil-fueled economic positive feedback loop will apply “monkey see, monkey do” in attempted emulation of that fossil-fueled economic growth strategy. This is why there is contention, exploitation and war within poor societies and impoverished populations. The desperate eat each other to claw to the top of their heaps.

So, the production and use of petroleum is driven by the will for selfish gain by rich and poor alike — the rich having much greater advantages in doing so — and by the legitimate needs of individuals and their societies to acquire sufficient energy to sustain their survival and that of their children in safe and decent lives. As population grows so does the need for greater amounts of energy: energy for human development, (1), (2).

Clearly, the single best strategy to slow, and maybe even someday reverse global warming, is to replace fossil fuel energy with solar and “green” energy, whose production and use does not emit CO2, CH4, and other organic “greenhouse” vapors.

While access to greater amounts of heat and electrical energy — whether from green or from fossil fuel sources — can make it easier to accommodate increased human fertility, the presence of reliable, global, equitable socialized protections of individual and family survival, health and well-being will act to limit (and ultimately decrease) population growth, and as a consequence throttle the need for an ever expanding grasp for energy.

So, the entwined trends of a population explosion concentrated among the “have nots,” with a highly inequitable expansion and use of energy — primarily from fossil fuels — controlled by the “haves,” combines to form our current world crisis of: global warming; environmental degradation; biodiversity, habitat and survivability losses; and inequitably distributed socio-economic decay. The cure for this world illness is the combination of a conversion from fossil fuel energy to green energy, along with the establishment of a global system of socialized security for individual and family survival, health and welfare.

The continuation of our globally feverish illness is simply a reflection of the continuation of selfishness and egotism applied on top of the genetically implanted instinct for survival, in our highly inequitable human societies and human civilization. The great barrier to curing this illness is overcoming the resistance to relinquishing the grasping for primitive personal advantage by the weakening and exploitation of others; and replacing it with: individual commitments to ethical living; mutual trust among all people; and economic leveling and universal human welfare as matters of government policy.

The combination of the last three would help to form a world solidarity that is in balance with Nature. This would be a consciously willed evolutionary advance of our species, a victory of frontal lobe cognition over limbic system reactivity. The unwillingness and “inability” to form such a green, world solidarity would be acquiescence to a near-distant, unnatural and unnecessary human extinction.

The cure is as immensely impractical and as trivially easy as all of us homo sapiens simply choosing to consciously change our ways, with trust in each other for fair dealing and mutual protection. Call it green socialism if you like.

Notes

1. Energy For Human Development,
https://manuelgarciajr.com/2011/11/09/energy-for-human-development/

2. Energy For Society In Balance With Nature
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

<><><><><><><>

Our Globally Warming Civilization

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Our Globally Warming Civilization

The 150 years of the Industrial Revolution (~1770-1920), with its catastrophic and bloody termination in World War I (1914-1918), had no noticeable effect on the global average temperature, which had hovered around 14.7 degrees Centigrade (C) since antiquity. The human population had taken 200,000 years (more or less) to grow to one billion (1B), in 1804, within the natural and majestic evolution of global climates during those 2000 centuries, (1).

By 1927, the human population had increased to 2B. The 1920s were economic boom years in the Industrialized World (give or take some post WWI German misery, the Russian Revolution, and Chinese civil warfare) with the liquid petroleum replacing the solid coal as the fossil fuel of choice for transportation vehicles; and the explosion in the craving for, and manufacture and use of, internal combustion engines and the automobiles powered by them.

After 1927 the rate of population growth increased from what it had been on average during the previous 123 years (about 8 million per year, ~8M/yr) to an average rate of 29M/yr, to accumulate another 0.7B people in the 26 years up to 1953, when the population was 2.7B. Those 26 years between 1927 and 1953 spanned the crescendo of the Roaring ‘20s, the capitalist economic collapse of 1929, the Great Depression (1929-1942), World War II (1939-1945), the Second Sino-Japanese War (1937-1945), and the Chinese Communist Revolution and Civil War (1946-1949).

I estimate that the cumulative amount of petroleum produced (pumped out and used up) by 1953 was 98.6 billion barrels (98.6 giga-barrels, 98.6Gb), (2). This implies that since about 1900, when civilization’s use of petroleum as a fuel began in earnest, it consumed 602 giga-GJ (602 x 10^18 Joules) of energy (equivalent to 168 mega-GWh = 168 x 10^9 MWh = 168 giga-mega-watt-hours) to power itself up to 1953, (3).

By 1960, the world’s human population had reached 3B, and the rate of population growth was accelerating (having been about 43M/year during the previous 7 years). From 1960 to the present day, the trend of cumulative production of petroleum, Q, has been proportional to the rising trend of human population, in the ratio of 272 barrels of oil per person (272 b/p).

Specifically, my approximating formula for Q, the accumulated production of oil in giga-barrels (Q, in Gb), given as a function of the population in billions (P, in B) for a given year within the interval 1960 to 2025 is:

Q(year) = [P(year) – 2.7B] x (272 b/p).

This approximation gives an accumulated production up to 2015 (with population 7.35B) of

Q(2015) = 1265Gb, (approximation).

By integrating the actual production rate-per-year curve (the “Hubbert curve” for world production, in GB/yr) given by Laherrere (2), I find the actual accumulated production up to 2015 to be:

Q(2015) = 1258Gb, (actual).

The rate of oil production is now likely at its peak of between 25 Gb/yr to 35 Gb/yr during this 20 year interval between 2005 and 2025, (2),(4). Thereafter, it should drop rapidly since current oil fields have diminishing production, there have been no major oil field discoveries since the 1970s and the frequency of discovery has steadily diminished since then. That means that over half of Earth’s original total reserves, estimated at 2,200Gb (2), have already been extracted. The “end-of-oil” seems destined for the last two decades of the 21st century.

Assuming all that oil was burned, up to the year 2015 (115 years since 1900), civilization would have used 7,674GGJ, (7,674 x 10^18 Joules), equivalent to 2,139GMWh, (2,139 x 10^15 Watt-hours) of energy, derived from that 1258Gb of petroleum, to power itself.

That burning would have released 398,786Gkg (~4 x 10^14 kg = ~400 giga tonnes) of CO2, (5). At present (May 2019) there are about 3,250 giga tonnes of CO2 in the atmosphere, with an average concentration of 415 parts per million by volume (415ppmv), (6). 1228 G tonnes of that CO2 is excess above the pre-industrial amount in the atmosphere. The ~400 G tonnes estimated here as the accumulated emissions from the prior burning of petroleum (up to about 2015) is only about one-third of the excess atmospheric CO2.

There are numerous other processes in our civilization, as well as in the natural world, that cause the emission of carbon-dioxide and its atmospheric retention in excess amounts. The main sources of CO2 emissions are the exhalations from aerobic respiration by all of Earth’s living heterotrophs, decaying plants, and volcanic eruptions. Other sources include: the burning of coal and natural gas, forest and vegetation fires caused naturally and by slash-and-burn agriculture, the bubbling out of CO2 from warming oceans no longer able to dissolve as much of that gas as before, and the massive amount of past and continuing forest clearing that has reduced Earth’s natural system of CO2 uptake — photosynthesis. The cement industry is one of the two largest producers of anthropogenic carbon dioxide, creating up to 5% of worldwide man-made emissions of this gas, of which 50% is from the chemical process and 40% from burning fuel, (7).

Methane (CH4) is a very potent greenhouse gas, being 30 times more effective than CO2 at trapping heat. “For each degree that Earth’s temperature rises, the amount of methane entering the atmosphere from microorganisms dwelling in lake sediment and freshwater wetlands — the primary sources of the gas — will increase several times. As temperatures rise, the relative increase of methane emissions will outpace that of carbon dioxide from these sources.” (8) Other sources of methane emissions are: rotting organic wastes, termite colonies, and bovine flatulence from industrialized agricultural sites. The globally warmed thawing Arctic tundra is now a region of major methane eruptions.

Up until 1974, when the human population had reached 4B, Earth’s climate system had yet to become feverish over the previous 200,000 years of collective human activity. However, at about that time the average global temperature began increasing at a historically unprecedented rate because of civilization’s heated and organic outgassing, a process which continues today as anthropogenic global warming, (9).

In fact, the date at which collective human activity began to affect and alter Earth’s climate system has now been pinpointed to somewhere between October to December 1965. That date marks the end of the Holocene Epoch of geologic history (which began 11,700 years previously, after the last Ice Age), and the beginning of the Anthropocene Epoch — the epoch of human-affected climate, globally. The physical phenomenon marking this transition is that Carbon-14, a radioactive isotope released during open-air atomic and nuclear bomb explosions between 1945 and 1963, had finally dispersed uniformly around the globe, and become absorbed into tree tissues even in the remotest parts of the world, thus recording that uniformity (10).

Between 1960 and 2025, the three rising trends of: population (P), cumulative oil production (Q), and increase of average global temperature above baseline (T – 14.7C = delta-T), are all uniformly proportional to one another.

Specifically (for years between 1960 and 2025) T, P and Q are related to each other as follows:

[T(year) – 14.7C] = [P(year) – 2.7B]/3.3B = [Q(year)/(900 Gb)],

where the forms above are each equivalent to a temperature difference relative to the baseline of 14.7C (delta-T, in degrees C).

Notice that if T = 15.7C, and P = 6B, and Q = 900 Gb, then the equality above holds, with: 1 = 1 = 1. This particular condition actually occurred during 1999.

During this 65 year interval, a 1 degree C rise in temperature (above 14.7C) is coincident with a 3.3B increase in population (above its 1953 level of 2.7B), which in turn is coincident with a production (and use) of 900Gb of petroleum.

The population is growing from 3B in 1960 to an expected 8B in 2028 during this 68 year interval, with an average population increase of +73.5M/yr. Within these 68 years, and especially during the 55 years from 1970 to 2025, the rising trends of (T – 14.7C), (P – 2.7B)/3.3B, and Q/(900Gb) are in lockstep. This period — with explosive population growth, depletion of over half of the Earth’s petroleum endowment, and with an unprecedented rate of global warming — began in the last year of the Eisenhower Administration, 1960, when John Kennedy was elected US President, and extends right up to the present (and beyond it).

The average global temperature will have climbed up from ~15C to ~16.2C during this interval, a relative rise of 1.4C, and a rise of ~1.5C (delta-T = ~1.5C) above the pre-industrial temperature, defined here as 14.7C (58.46 degrees Fahrenheit). That 1.5C (2.7F) warming above the pre-industrial temperature represents a tremendous amount of heat energy diffused throughout the biosphere, and the deleterious effects of that excess heat are self-evident to all: the altering of climate; the powering of violent weather; the heating and acidifying (with absorbed CO2) of the oceans, sterilizing them of marine life; the melting of glaciers and thawing of tundras; the causing of carbon dioxide and methane to bubble out of solution and frozen capture in the natural world (in a vicious feedback loop); the expansion of disease pathogens and tropical parasites; and the added stresses to both wild and farmed vegetation, and increased desertification, which result in human hunger and desperate migrations of impoverished refugees.

Now, our civilization is starting to suffocate in the lingering heat of its previous exhalations. The singular challenge to our species and to our political economies is what to do, collectively, about global warming. That challenge remains largely unanswered, and tragically denied by too many people .

Notes

1. World population is estimated to have reached one billion for the first time in 1804. It was another 123 years before it reached two billion in 1927, but it took only 33 years to reach three billion in 1960. The global population reached four billion in 1974 (14 years later), five billion in 1987 (13 years later), six billion in 1999 (12 years later), and seven billion in October 2011 (12 years later), according to the United Nations, or in March 2012 (13 years later), according to the United States Census Bureau.
https://en.wikipedia.org/wiki/World_population

World population by year
https://www.worldometers.info/world-population/world-population-by-year/

2. Jean Laherrere, World Crude Oil Production, (brown line), April 2015
https://upload.wikimedia.org/wikipedia/commons/4/46/World_crude_discovery_production_U-2200Gb_LaherrereMar2015.jpg

3. The energy released from combusting 1 barrel of oil is 6.1 giga-joules (6.1 GJ), which equals 1.7 MWh (1.7 mega-watt-hour).
https://en.wikipedia.org/wiki/Barrel_of_oil_equivalent

4. Worldwide, around 92.6 million barrels of oil were produced daily in 2017.
https://www.statista.com/statistics/265203/global-oil-production-since-in-barrels-per-day/
~73 million barrels/day in 1998, rising since.
73 Mb/day = 26.7 Gb/yr (1998)
93 Mb/day = 34.0 Gb/yr (2017)
During 20 years of production (1998-2017) the rate rose 20 Mb/day = +1 MB/day/year

5. Burning one barrel of petroleum can produce between 317kg (realistically) to 433kg (theoretically) of CO2:
Realistic
http://numero57.net/2008/03/20/carbon-dioxide-emissions-per-barrel-of-crude/
Theoretical
https://www.answers.com/Q/How_much_CO2_produced_by_burning_one_barrel_of_oil
Therefore, the CO2 emitted by combusting 1b = 317kg CO2.

6. As of January 2007, the earth’s atmospheric CO2 concentration is about 0.0383% by volume (383 ppmv) or 0.0582% by weight. This represents about 2.996×10^12 tonnes (1 tonne = 1000kg), and is estimated to be 105 ppm (37.77%) above the pre-industrial average (~278 ppmv).
https://micpohling.wordpress.com/2007/03/30/math-how-much-co2-by-weight-in-the-atmosphere/

415 ppmv of atmospheric CO2, as of May 2019
https://en.wikipedia.org/wiki/Carbon_dioxide_in_Earth%27s_atmosphere

Therefore:
(415/383) x 3000 G tonnes = 3,250 G tonnes, (May 2019).

7. Environmental impact of concrete
https://en.wikipedia.org/wiki/Environmental_impact_of_concrete

8. Methane is roughly 30 times more potent than CO2 as a heat-trapping gas
https://www.sciencedaily.com/releases/2014/03/140327111724.htm

9. I first constructed the simplified plot of average global temperature in 2004, using data from public sources. Details about that construction and the data used are given at:
Population, Oil and Global Warming, 31 May 2019 (15 March 2004)
https://manuelgarciajr.com/2019/05/31/population-oil-and-global-warming/

10. The Anthropocene Epoch began sometime between October and December 1965.
https://manuelgarciajr.com/2018/02/23/the-anthropocenes-birthday/

<><><><><><><>