Ye Cannot Swerve Me: Moby-Dick and Climate Change

“Come, Ahab’s compliments to ye; come and see if ye can swerve me. Swerve me? ye cannot swerve me, else ye swerve yourselves! man has ye there. Swerve me? The path to my fixed purpose is laid with iron rails, whereon my soul is grooved to run. Over unsounded gorges, through the rifled hearts of mountains, under torrents’ beds, unerringly I rush! Naught’s an obstacle, naught’s an angle to the iron way!”
— Herman Melville (1819-1891), Moby-Dick, Chapter 37.

This is one of many passages, in Herman Melville’s 1851 novel, Moby-Dick, describing Captain Ahab’s monomaniacal obsession to hunt down and kill the white bull sperm whale whose name is the novel’s title. (1) Ahab sought vengeance for being scarred — with curved conical teeth up to 20 cm (8 in) long and weighing up to 1 kg (2.2 lb) each — from head to knee and having his leg torn off, against Moby Dick, who had fought off a pursuit by whalers led by Ahab on a previous voyage:

“Aye, Starbuck; aye, my hearties all round; it was Moby Dick that dismasted me; Moby Dick that brought me to this dead stump I stand on now… Aye, aye! it was that accursed white whale that razed me; made a poor pegging lubber of me for ever and a day!… and I’ll chase him round Good Hope, and round the Horn, and round the Norway Maelstrom, and round perdition’s flames before I give him up. And this is what ye have shipped for, men! to chase that white whale on both sides of land, and over all sides of earth, till he spouts black blood and rolls fin out.”

But Starbuck, the First Mate aboard their ship, the Pequod, was having none of it. Starbuck was a devout Christian, a Quaker, eschewing all violence except for the hot bloody rush of catching and killing whales to boil their blubber down to the fine oil that would fetch handsome profits at the Nantucket market. Starbuck objects to his commander’s private scheme hijacking the Pequod and her crew from “the business we follow… I came here to hunt whales, not my commander’s vengeance.” To Starbuck, Ahab’s obsession is not only a derailment of their business but even an affront to God, because Ahab is intent to avenge himself on Nature itself through its organic manifestation as this one mighty white whale:

“Vengeance on a dumb brute!” Starbuck replies to Ahab, “that simply smote thee from blind instinct! Madness! To be enraged with a dumb thing, Captain Ahab, seems blasphemous.”

As regards human activity, Starbuck was right, but we now know that sperm whales are intelligent animals, like all cetaceans, and not purely dumb brutes: they have both memory and intent. The sperm whale brain is the largest known of any modern or extinct animal, weighing on average about 7.8 kilograms (17 lb), more than five times heavier than a human’s, and has a volume of about 8,000 cm^3. The sperm whale’s cerebrum is the largest in all mammalia, both in absolute and relative terms. (2)

The story, Moby-Dick, is famous around the world and most people know that Ahab and all his crew except one, Ishmael, perished in a failed attempt to wreak Ahab’s vengeance, which even cost the sinking of the Pequod, stove in by Moby Dick’s ramming. The novel is much much more than merely its sea adventure plot, and description of 19th century whaling. It is a roving philosophical inquiry into the nature of character, faith and perception; as well as a metaphor for Melville’s ruminations on American democracy, which was shifting from a free association of agrarian ruralists to an increasingly industrialized regimentation of expansionist outlook. Melville’s Moby-Dick, along with Mark Twain’s Huckleberry Finn (1885), are the quintessential American novels (in my opinion, at least).

A key point in Moby-Dick is that the crew willingly joined into Ahab’s scheme, and despite Starbuck’s opposition to it. By rights, and whaling industry regulations and customs, the officers and crew of the Pequod were duty-bound to wrest control of the ship from Ahab because he was usurping the use of the vessel and its personnel for his private ends, and away from its intended purpose. The fully outfitted Pequod, bound on a three year hunting expedition, represented the investments of the owners and many shareholders, including widows and orphans of lost Nantucket whalers, as well the ongoing labor investments of the Pequod’s crew, which were to be paid out of the expected harvest of whale oil.

Maximizing that harvest was the whalers’ business, and it was intended to be pursued as a voluntary association of men into a hierarchical organization glued together by a commonality of personal financial interests. Ahab used his fearsome magnetic personality, like witchcraft, to steal the souls of his men and make them instruments for the implementation of his own personal hatred. Carl Gustav Jung (1875-1961), the great Swiss psychiatrist and psychoanalyst, made this exact diagnosis of Adolph Hitler (1889-1945) and the German nation under his dictatorship during 1933 to 1945. (3) That same diagnosis can be applied, in varying degrees, then and now, here and abroad, to many political “leaders.” The eternal question for the many laboring crews of the many workshops of this world — agrarian and industrial — is: do we work dutifully to the death, or till cast adrift as expendable, and do we willingly follow the leader to perdition if he is hellbound and determined for it; or do we rebel, overturn the structure of command, and lead ourselves even if such freedom entails a hard life?

And this brings me to global warming climate change: fossil fuels are the opiates in the addiction to war that would be the death of humanity by Planet Earth’s rejection of it.

Do we work dutifully to the death, or till cast adrift as expendable, and do we willingly follow the leader to perdition if he is hellbound and determined for it; or do we rebel, overturn the structure of command, and lead ourselves even if such freedom entails a hard life? Is humanity as a whole worth our individual pains in this effort? Or, is the idea of restructuring human civilization — and soon — to jettison capitalism, authoritarianism, and their enabling fossil-fueled militarism and marbling corruption, just a chimera that would use up our individual life forces to no avail; is it simply better to accept the inevitability of inequitable finalities and “Gather ye rosebuds while ye may,” as Robert Herrick (1591-1674) wrote? (4)

I, personally, rebel at this surrender because I see it as a betrayal of our young people, and an insult to our honor and to our fully liberated frontal lobe intelligence (though much of that is neglected and unused, I’ll grant) and our technical capabilities. But I don’t dismiss the question: I guess I’ve gotten old.

It has been 31 years since climatologist James E. Hansen, in testimony to the U.S. Congress in June 1988, made one of the first assessments that human-caused warming had already measurably affected global climate. Shortly after, a “World Conference on the Changing Atmosphere: Implications for Global Security” gathered hundreds of scientists and others in Toronto. They concluded that the changes in the atmosphere due to human pollution “represent a major threat to international security and are already having harmful consequences over many parts of the globe,” and declared that by 2005 the world should push its emissions some 20% below the 1988 level. (5)

Since then, basically, nothing substantive has been done by our governments to combat this existential threat. And today the reality of global warming climate change — the crisis of continuing existence — is known, viscerally, to everybody (even the liars).

Our geophysical problem is the slowing of the advance of global warming, by drastically reducing the rates of continuing accumulation in the atmosphere of carbon dioxide, methane, and other greenhouse gases (like volatile organic compounds, VOCs) whose aggregate heat-trapping mass could push Earth’s climate system past an unknown threshold or “tipping point,” triggering a sudden and catastrophic transition to climatic conditions significantly more hostile to human survival.

What may not be fully appreciated is that our geophysical problem may be far beyond human capabilities to ever be resolved even were humanity to metamorphose itself through a rapid social evolution producing a miraculous reformulation of human civilization into an enlightened temporal Nirvana liberally powered entirely by green energy.

Will climate change drive humanity to extinction? If so, how much time have we got?, and how will it happen? These questions are on the minds of many people today. In this essay, I will follow paleontologists deep into the geological past to see if it can offer any analogs to the evolving climatic conditions of today, and in that way give us a window into our future.

Average Global Surface Temperature History

The trend of average global surface temperature between 1900 and 2100 — relative to the average temperature during 1951 to 1980 (the “datum” for our temperature scales here) — is shown in the following figure (6).

Projections (colored lines), with uncertainty bounds of ±1 standard deviation (shading), for future surface temperature rise from models that use different economic scenarios. Scenario A2 (in red) represents “business as usual” where temperature is projected to rise by the end of the century between 2°C and 5.5°C if no effort is made to constrain the rise of CO2 concentration in the atmosphere, which by 2100 could range between 525ppm and 1000ppm (ppm = parts per million of the air volume). The solid bars at right indicate the best estimate (solid line) and possible ranges (grey shading) for each scenario. (6)

A view of this relative temperature history between 1880 and 2016 follows.

Notice that the temperature distance from the 1951-1980 average global surface temperature ranges from -0.8°C (1917) to +1.3°C (February 2016). Planet Earth today is about 1.5°C warmer than it was in the 19th century. What was the global surface temperature at earlier times?

Planet Earth has gone through many cycles of glacial and interglacial intervals over the previous 800,000 years. During those Ice Age climatic oscillations, the concentration of carbon dioxide gas (CO2) in the atmosphere cycled between about 170ppm and 300ppm, and temperature cycled between about +4°C and -10°C about our mean global surface temperature datum. (7)

Climate change during the previous 65 million years has been charted as follows. For the details of this image, see note (8).

The green trace shows oxygen isotope measurements (for the oxygen-18 isotope as a fraction of the oxygen present in the sample) on the stacked layers of carbonate (chalk) deposits down through the seafloor (obtained by core drilling), formed from the compacted shells of ancient foraminifera. Temperatures later than 13Mya (Mya = million years ago) are shown in the box at the lower right of the above image; the dashed horizontal line indicates the datum. Temperatures (relative to the datum) between 65Mya and 35Mya are shown in the box in the upper left of the image. Antarctica was glaciating, thawing and reglaciating between 35Mya and 13 Mya, and science has insufficient data to determine the temperature history for that complicated interval. (8)

Notice the little spike labeled PETM, at 56Mya in the image above. This is the Paleocene-Eocene Thermal Maximum, a very short-lived (200,000 years) high temperature excursion. The height of this temperature spike is likely underestimated by a factor of 2 to 4 because of the coarse sampling and averaging involved in this record.

At least since 1997, the Paleocene–Eocene Thermal Maximum has become a focal point of considerable geoscience research because it probably provides the best past analog by which to understand impacts of global climate warming and of massive carbon input to the ocean and atmosphere, including ocean acidification. Although it is now widely accepted that the PETM represents a “case study” for global warming and massive carbon input to Earth’s surface, the cause, details and overall significance of the event remain perplexing. (9)

Paleocene–Eocene Thermal Maximum (PETM)

The paleogeography of 56Mya was not that different from today; there was no ice at the poles, the Atlantic Ocean was not as wide as it is now, and India was only just beginning to collide with the rest of Asia. The climate during the Eocene Epoch (56Mya to 34Mya) was much warmer then today: Redwood trees grew in the Canadian Arctic, and the environment of that polar region looked like Okefenokee Swamp (straddling the state boundaries of present-day Florida and Georgia); mid-latitude continental interiors were warm through the winter, with giant palms growing in Wyoming and crocodiles ranging through the swamps and rivers. The poles remained ice-free during the entire interval spanning the Paleocene Epoch (66Mya to 56Mya) and the Eocene Epoch (56Mya to 34Mya).

The expected rise in average global surface temperature during the 90 years between 2010 and 2100 is like the rise in global temperature, going backwards in time, from ‘now’ to 35Mya: about 4°C to 5°C above the datum. “In just a few human lifetimes we’re going to change conditions in the atmosphere to a state that hasn’t been seen in 35 million years” commented Dr. Scott Wing (Curator of Fossil Plants, Smithsonian Museum of Natural History, Washington, DC) in his detailed lecture on the PETM. (10)

During the Paleocene, CO2 concentration in the atmosphere (also called “partial pressure”) was estimated to have been at 380ppm to 400ppm, and then rose to 800ppm just prior to the onset of the PETM (56Mya), producing a global temperature about 4°C warmer than our datum. The CO2 concentration then doubled or more to at least 1600ppm to 2000ppm within a few millennia at the start of the PETM, ‘quickly’ (in geological terms) producing an additional temperature rise of 4°C to 8°C.

Between 4,000 and 7,000 billion tons of carbon were injected into the atmosphere within the initial millennia of the PETM; the first (and biggest?) pulse lasting less than 2,000 years, and the emissions ending within 20,000 years. It would take the natural processes of CO2 removal 200,000 years to return the CO2 concentration and the global temperature to their levels prior to the onset of the PETM.

The amount of carbon injected into the atmosphere during the PETM is about the size of the carbon burp that would (will?) be realized by burning the entire fossil fuel reservoir humanity has at its disposal. However, the rate at which atmospheric carbon (CO2 and CH4) was emitted during the PETM is at least 10 times slower than today’s anthropogenic emissions! What may have taken 3,000 years during the PETM, we are accomplishing within 300 years; in fact 200 million years of fossil fuel accumulation has been burned in about 160 years.

The essential point here is that it will take 100,000 to 200,000 years to get back to the “normal” climate we left behind us in the middle of the 20th century. On this, Dr. Scott Wing commented: “The effects last for 200,000 years. So this is a global shift, which to a geologist looks like a transient change, like a perturbation, like a blip, but to any sane human it’s forever.”

Where did PETM carbon emissions come from? Science does not have a definitive answer, but its four estimates, ranked from most likely to least likely are:

— methane bubbling up out of warmed deep ocean methane hydrates (ice-like solids trapping methane, produced by microbes feeding on decaying organic matter, and formed in the cold and high pressure at the bottom of oceans) and then oxidizing in the atmosphere (CH4 combining with oxygen to produce CO2 and water vapor);

— extensive wildfires that included the burning of peat deposits (because the burning of all terrestrial vegetation alone would have produced insufficient carbon, so the burning of peat would also have been necessary);

— volcanic intrusions into organic-rich sediments at the floor of North Atlantic off Scandinavia (a region of very active volcanism at the time) cooking the sediments to release CO2 and methane;

— the warming and oxidation of any permafrost that may have remained, and it giving up lots of carbon.

It is possible that a combination of these four effects may have occurred.

All the soils formed in the Big Horn Basin of Wyoming during the 200,000 years of the PETM have been compacted to stacked layers of sediments 40 meters thick in total. During the PETM that region had a warm dry tropical climate; bean plants proliferated. Before and after the PETM the climate was temperate and bean plants were absent from the Big Horn Basin (at least in the respective fossil records). During the first 150,000 years of the PETM, warm climate plants (like beans) moved north even to the Arctic, and then retreated south during the last 50,000 years of the PETM, with temperate climate plants reappearing.

Plants growing in a high CO2 environment make less green pigment and have lower nutritive value, so plant eaters have to eat more to sustain themselves, or evolve to smaller sizes to reduce their metabolic requirements. Animals and insects did both during the PETM. Ancient horses first appeared in America at the very beginning of the PETM, and they ‘quickly’ shrank in size by about 30% — to the size of domesticated cats today. With the uptake of CO2 at the close of the PETM and the return to ‘normal’ Eocene conditions, this species of tiny horses increased in size by 76%. A similar shrinkage of body size during the PETM occurred for the other mammal species present at the time, including primates.

The four major scientific lessons of the PETM are:

— big emissions of carbon into atmosphere result in warmer climate and more acidic oceans, and that acid seawater dissolves deep marine chalk (and kills marine organisms living in the lower few kilometers of the oceans because dissolved oxygen has been scavenged — hypoxia — and because shell formation, for the protective casings required by many marine organisms, is impossible because of the acidity);

— there are self-reinforcing cycles of carbon release with increased temperature: CO2 and CH4 capture and retain heat and warm the atmosphere; that warms the oceans and results in intermittent rainfall on the continents (heavy rains with long dry spells between); that causes an abundant growth of vegetation, which parches during the droughts and dry spells and feeds wildfires releasing more CO2, heating the atmosphere and oceans further; that leads to the dissociation of marine methane hydrates, which release methane gas and heat the atmosphere and oceans even further; a sequence of vicious cycles;

— rapid global warming changed where plants and animals lived and how they interacted (this is affecting 21st century people, too), and drove rapid evolution in the body sizes (shrinkage) of mammals;

— and the effects last for 200,000 years because it takes Nature that long to clear out the excess CO2 from the atmosphere and oceans.

What brought the CO2 concentrations down and ended the PETM? The process of photosynthesis in growing plants pulled CO2 out of the air and bound it into nutrients (sugars, glucose, plant tissues), which partially migrated into animal tissues as food. CO2 was also absorbed by the surfaces of the oceans, and reacted at depth with carbonate compounds to dissolve the sea floor chalk and acidify the seawater. Over a longer term, 10% to 30% of the excess CO2 was removed by weathering reactions in soils, and the erosion by rain and streams of rocks imprisoning CO2 carried sediments back to the oceans, where they settled out on the sea bottom. Long after the time scale of the PETM, those seafloor sediments would be interred by subduction at tectonic plate boundaries.

Carbon uptake is slow. A computer simulation of the instantaneous dumping of 5,000 billion tons of carbon into atmosphere (producing an atmospheric concentration of 2,500ppm of CO2, by volume) showed that:

— roughly half of the CO2 comes out in first 1,000 years;

— 30% to 40% still remains at 10,000 years;

— and it isn’t all removed until after 100,000 years, so by about 150,000 to 200,000 years as occurred with the PETM.

A visual representation of CO2 uptake follows (11)

For a detailed description of the CO2 uptake processes, see note (11).

Similar computer modeling has been done for our climate future out to year 3000. Assuming that the entire fossil fuel reservoir is burned up by year 2100, injecting 5,000 billion tons of carbon into the atmosphere, the global temperature will rise to 4.5°C above datum by 2100 and remain there. Among the expected effects are a sea level rise of 1 meter by 2100, and 7.5 meters (25 feet) by year 3000 because the Greenland Ice Cap will have melted.

The major problem of having elevated global temperature for a long time — and it will be long since Nature takes “forever” to reabsorb atmospheric CO2 — is that major melting will eventually occur. As we are learning from direct observation today, that major melting may occur more rapidly than scientists were at first led to believe on the basis of their earlier computer modeling. If the Antarctic Ice Cap were also to entirely melt, sea level would be 66 meters (216 feet) higher in an ice-free world.

Could humanity today go on a furiously massive campaign to plant more trees and vegetation, so as to suck out excess CO2 from the atmosphere and stop global warming? No. We just can’t emplace enough plants to accomplish this, the rate of CO2 removal implied by this question is beyond the capability of Earth’s biosphere however lush. However, increasing the mass and area of vegetation (plants, trees) would slow the rates of CO2 accumulation and temperature increase, and help us lose ground (against the advance of global warming) less rapidly. So yes, plant!; it would also be a relief to wildlife sorely pressed with habitat losses.

Life in the Anthropocene

Geologists have recognized that we are now living in an epoch whose climate is fundamentally affected by human activity. That epoch has been termed the Anthropocene (12), and it was officially designated to have begun in the 4th quarter of 1965. (13)

“We have started the Anthropocene but the things that we think are untrammeled nature are already trammeled by us. There’s no eco-system on this planet that hasn’t had the human fingerprint on it some way or another. And many of the things that we think are beautiful and natural have already been modified by our ancestors, in ways that may not be obvious to us… What the Anthropocene perspective does is it helps us recognize that with [over] 7 billion people on the planet, and thousands of years, tens of thousands of years-long history already of modifying the planet, that it’s really too late to think about putting anything back the way it was,” Dr. Scott Wing.

I can think of 9 possible negative effects (mainly on human civilization) from severe global warming:

— reduced food production on land because of droughts and desertification, and a reduction of the nutritive value of crops because of high CO2 concentration;

— increased scarcity of fresh water, because of hot dry climatic conditions, intermittent rainfall, and huge population;

— the global spread of disease germs and usually tropical parasites, in a hotter world;

— loss of seafood with acidic seas, and increased starvation for animals and people;

— habitat losses for people, given significant coastal inundation and excessive heat and desertification in continental interiors;

— habitat losses for terrestrial wildlife as with humans, but also for marine life because of the reduced dissolved oxygen and increased acidity of the oceans;

— climate disaster-sparked mass migrations, which among humans will undoubtedly lead to clashes and even wars;

— resource scarcity wars (for basics like water, and for rarities like the semiconductor materials and metals essential to high tech electronics, and maybe in the extreme even for uranium deposits);

— increasingly heartless exclusion of the poor by the rich and powerful (a worldwide ‘Gazafication’ of the hapless poor).

We see some of each of these today, but the questions are: how much worse could it get?, and by when?

The development of human civilization over the last 10,000 years or so was aided by the benevolence of a very stable and moderate interglacial climate. In this new Anthropocene Epoch of increasing climate instability, we can anticipate major disruptions in human affairs, and given the socio-economic disparities and hostilities built into our human societies, we can anticipate the burdens of those disruptions to fall inequitably on poorer people. Misery will pushed down the gradient of wealth towards the destitute. In an extreme projection of pessimism, one could imagine conflicts of immiseration avoidance to devolve into extinction events, like a nuclear war.

However, the anticipated climate variations, like those of the PETM, will not in themselves be sufficiently extreme to force the actual physical extinction of humanity. In 7.95 billion years, when the Sun expands into a Red Giant star, then life on Planet Earth will be evaporated. But until such time, the most likely cause of a premature human extinction would be bad human behavior in response to the climate changes confronting humanity, and which we have caused.

It would be good for us to become familiar with how life is distributed in the Anthropocene, the epoch whose gallop we are spurring, so we can lead it more thoughtfully.

Humanity today comprises only 0.01% of all life on Planet Earth, but over the course of human history our species has destroyed 83% of wild mammal species. (14)

“The world’s 7.6 billion people [in May 2018] represent just 0.01% of all living things, according to the study. Yet since the dawn of civilisation, humanity has caused the loss of 83% of all wild mammals and half of plants, while livestock kept by humans abounds. The new work is the first comprehensive estimate of the weight of every class of living creature and overturns some long-held assumptions. Bacteria are indeed a major life form – 13% of everything – but plants overshadow everything, representing 82% of all living matter. All other creatures, from insects to fungi, to fish and animals, make up just 5% of the world’s biomass. Farmed poultry today makes up 70% of all birds on the planet, with just 30% being wild. The picture is even more stark for mammals – 60% of all mammals on Earth are livestock, mostly cattle and pigs, 36% are human and just 4% are wild animals.” Where is all that life to be found?: 86% on land, 1% in the oceans, and 13% as deep subsurface bacteria. (14)

One suggested marker for the Anthropocene are the bones of domestic chickens, which are now ubiquitous around the globe. The marker recognized has having achieved complete coverage over the surface of Planet Earth by late 1965 is radioactive fallout from atmospheric atomic and nuclear bomb explosions.

Our Challenge

Remember that the biggest threat to humanity’s survival is anti-social human behavior; climate change alone can’t kill us.

If we choose to experience our present and future of changing climate as a competitive war game — with actual killing and willful destruction — to gain class, factional and ideological advantages in terms of physical security, habitability, food production, natural resource availability, standard of living and social status (ego gratification), then that species-wide dysfunctional response could ultimately lead to a collapse of civilization, and at its worst to a global nuclear war and then actual human extinction.

If we choose to experience our present and future of changing climate as an intellectual challenge to human ingenuity for technical innovation, and as a moral challenge for social organization and for the elimination of socio-economic disparities, then such a species-wide response would improve the human condition regardless of the degree of future climate variability and the geographical distribution of its effects on habitability.

Regardless of what we do or don’t do, the climate will change in ways governed by majestic and interlocking geophysical cycles spanning millennia. Our individual and species-wide experiences of living within this implacable reality will be set by how we choose to interact with each other. Nirvana or perdition are choices entirely within our grasp.

Many will say that obviously climate change as competitive war game is the only realistic alternative because it requires no behavioral changes from our over 10,000 years of “civilized” human history, and because eco-socialism is pure utopianism and thus beyond all realistic actualization. And of course, eco-socialism is impossible in a world of Ahabs and fanatical Ahab followers. But all that is just an excuse to continue with bad behavior. There are no actual physical or biological constraints preventing people from choosing to associate in an eco-socialist manner. The current societal improbability for deeply cooperative behavior does not make future species-wide collective cooperation an impossibility. Responding to climate change could provide a framework on which to build such a species-wide socialist civilization.

So, how would I respond to the Ahabs out there who would tell me: “Everything you say is wrong! God is White! Trump is Christ! Capitalism is Salvation! Ye cannot swerve me!” From me: You can’t accept it because then you wouldn’t be the person you are. You can’t learn if you are unwilling to change. And that, ultimately, is what climate change will be for us: a challenge to learn.

And finally, Nature to Ahab: Ye cannot swerve me! Your world may return in 200,000 years.

Notes

(1) Herman Melville, Moby-Dick or, The Whale, (1851), Penguin Books, 1992.

(2) Sperm Whale,
https://en.wikipedia.org/wiki/Sperm_whale

(3) Carl Gustav Jung, C. G. Jung Speaking: Interviews and Encounters, Princeton University Press, 21 February 1987, edited by: William McGuire and R. F. C. Hull; “Diagnosing the Dictators” 1938, pages 115-135; “Jung Diagnoses the Dictators” 1939, pages 136-140; (dictators = Hitler, Stalin Mussolini).

(4) “To the Virgins, to Make Much of Time,” (Robert Herrick)
https://en.wikipedia.org/wiki/To_the_Virgins%2C_to_Make_Much_of_Time

(5) History of climate change science
https://en.wikipedia.org/wiki/History_of_climate_change_science

(6) Global Surface Temperature, 1900-2100
(relative to 1951-1980 average global surface temperature)
National Research Council 2011. Understanding Earth’s Deep Past: Lessons for Our Climate Future. Washington, DC: The National Academies Press.
Figure 1.1, page 35 of the PDF file, page numbered 20 in the text.
Figure 1.1 SOURCE: IPCC (2007, Figure SPM.5, p. 14).
https://doi.org/10.17226/13111

(7) Global view answers ice age CO2 puzzle
April 4, 2012 — andyextance
https://simpleclimate.wordpress.com/2012/04/04/global-view-answers-ice-age-co2-puzzle/

The 800,000 year record of atmospheric CO2 from Antarctic ice cores, and a reconstruction of temperature based on hydrogen isotopes in the ice. The current [2012] CO2 concentration of 392 parts per million (ppm) is shown by the blue star. Credit: Jeremy Shakun/Harvard University

(8) 65 Million Years of Climate Change
(wikipedia, 13 July 2019)
https://commons.wikimedia.org/wiki/File:65_Myr_Climate_Change.png

This figure shows climate change over the last 65 million years. The data are based on a compilation of oxygen isotope measurements (δ18O) on benthic foraminifera by Zachos et al. (2001) which reflect a combination of local temperature changes in their environment and changes in the isotopic composition of sea water associated with the growth and retreat of continental ice sheets.

Because it is related to both factors, it is not possible to uniquely tie these measurements to temperature without additional constraints. For the most recent data, an approximate relationship to temperature can be made by observing that the oxygen isotope measurements of Lisiecki and Raymo (2005) are tightly correlated to temperature changes at Vostok as established by Petit et al. (1999). Present day is indicated as 0. For the oldest part of the record, when temperatures were much warmer than today, it is possible to estimate temperature changes in the polar oceans (where these measurements were made) based on the observation that no significant ice sheets existed and hence all fluctuation in (δ18O) must result from local temperature changes (as reported by Zachos et al.).

The intermediate portion of the record is dominated by large fluctuations in the mass of the Antarctic ice sheet, which first nucleates approximately 34 million years ago, then partially dissipates around 25 million years ago, before re-expanding towards its present state 13 million years ago. These fluctuations make it impossible to constrain temperature changes without additional controls.

Significant growth of ice sheets did not begin in Greenland and North America until approximately 3 million years ago, following the formation of the Isthmus of Panama by continental drift. This ushered in an era of rapidly cycling glacials and interglacials.

Also appearing on this graph are the Eocene Climatic Optimum, an extended period of very warm temperatures, and the Paleocene-Eocene Thermal Maximum (labeled PETM). The PETM is very short lived high temperature excursion possibly associated with the destabilization of methane clathrates and the rapid buildup of greenhouse gases in the atmosphere. Due to the coarse sampling and averaging involved in this record, it is likely that the full magnitude of the PETM is underestimated by a factor of 2-4 times its apparent height.

(9) Paleocene–Eocene Thermal Maximum (PETM)
https://en.wikipedia.org/wiki/Paleocene%E2%80%93Eocene_Thermal_Maximum

(10) Global Warming 56 Million Years Ago, and What it Means For Us
30 January 2014
Dr. Scott Wing, Curator of Fossil Plants,
Smithsonian Museum of Natural History
Washington, DC
[1:44:12]
https://youtu.be/81Zb0pJa3Hg

(11) CO2 “lifetime” in the atmosphere
National Research Council 2011. Understanding Earth’s Deep Past: Lessons for Our Climate Future. Washington, DC: The National Academies Press.
Figure 3.5, page 93 of the PDF file, page numbered 78 in the text.
https://doi.org/10.17226/13111

CO2 Sweepers and Sinks in the Earth System
The carbon fluxes in and out of the surface and sedimentary reservoirs over geological timescales are finely balanced, providing a planetary thermostat that regulates Earth’s surface temperature. Initially, newly released CO2 (e.g., from the combustion of hydrocarbons) interacts and equilibrates with Earth’s surface reservoirs of carbon on human timescales (decades to centuries). However, natural “sinks” for anthropogenic CO2 exist only on much longer timescales, and it is therefore possible to perturb climate for tens to hundreds of thousands of years (Figure 3.5). Transient (annual to century-scale) uptake by the terrestrial biosphere (including soils) is easily saturated within decades of the CO2 increase, and therefore this component can switch from a sink to a source of atmospheric CO2 (Friedlingstein et al., 2006). Most (60 to 80 percent) CO2 is ultimately absorbed by the surface ocean, because of its efficiency as a sweeper of atmospheric CO2, and is neutralized by reactions with calcium carbonate in the deep sea at timescales of oceanic mixing (1,000 to 1,500 years). The ocean’s ability to sequester CO2 decreases as it is acidified and the oceanic carbon buffer is depleted. The remaining CO2 in the atmosphere is sufficient to impact climate for thousands of years longer while awaiting sweeping by the “ultimate” CO2 sink of the rock weathering cycle at timescales of tens to hundreds of thousands of years (Zeebe and Caldeira, 2008; Archer et al., 2009). Lessons from past hyperthermals suggest that the removal of greenhouse gases by weathering may be intensified in a warmer world but will still take more than 100,000 years to return to background values for an event the size of the Paleocene-Eocene Thermal Maximum (PETM).

In the context of the timescales of interaction with these carbon sinks, the mean lifetime of fossil fuel CO2 in the atmosphere is calculated to be 12,000 to 14,000 years (Archer et al., 1997, 2009), which is in marked contrast to the two to three orders of magnitude shorter lifetimes commonly cited by other studies (e.g., IPCC, 1995, 2001). In addition, the equilibration timescale for a pulse of CO2 emission to the atmosphere, such as the current release by fossil fuel burning, scales up with the magnitude of the CO2 release. “The result has been an erroneous conclusion, throughout much of the popular treatment of the issue of climate change, that global warming will be a century-timescale phenomenon” (Archer et al., 2009, p. 121).

(12) Anthropocene
https://en.wikipedia.org/wiki/Anthropocene

(13) The Anthropocene’s Birthday
https://manuelgarciajr.com/2018/02/23/the-anthropocenes-birthday/

(14) Humans just 0.01% of all life but have destroyed 83% of wild mammals – study
https://www.theguardian.com/environment/2018/may/21/human-race-just-001-of-all-life-but-has-destroyed-over-80-of-wild-mammals-study

<><><><><><><>
<><><><><><><>

American Climate Change Policy: You Don’t Matter

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

American Climate Change Policy: You Don’t Matter

Some weary words spurred by: “Pickin’ and Choosin’ the Winners and Losers of Climate Change” (https://www.counterpunch.org/2019/06/24/pickin-and-choosin-the-winners-and-losers-of-climate-change/).

The pickin’ and the choosin’ of the winners and the losers of Climate Change was all set from the get-go. The Big Money was always going to win because the Big Money always does the pickin’. It’s the American Way. If there was ever any doubt among the blessedly naïve and trusting Demos Americanus about who counts and who doesn’t, then the spectacular publicly-funded deus-ex-machina salvation of the Wall Street Glitterati (WSG) from the financial cataclysm of 2008 should have forever laid to rest all such confusions. You don’t matter (you, because “they” don’t read here).

Nuclear war breaking out? They’re got reservations in the shelters; you’re out to the Big Fry. Ebola Bird Flu Pandemic 2020 racing ‘round the world? They’ve got guaranteed pills and vaccines; you’ve got aspirin, Go-Fund-Me healthcare, and are designated anti-vaxxer by default. Climate Change hurricanes, floods, droughts and crop failures pouncing on you? They’ll stay fat, dumb, happy high-and-dry under Uncle Sam’s caressing wings; you’ll be a pioneer rugged individualist facing off against the sun, with act-of-god cancelled insurance, sucking dried marrow out of bones from drought-kills for your heroic survival (for a month or two).

There is no such thing as Climate Change denial from the Trumpian Monarchy and the Royal Court of WSG’ers, it is all calculated Climate Change delay-ism, stalling propaganda (https://redgreenandblue.org/2019/06/20/trumps-climate-change-denial-red-team-trots-old-debunked-lies/), as Val Eisman remarked to me. In short: premeditated murder (https://manuelgarciajr.com/2017/09/09/climate-change-denial-is-murder/). This has been obvious for decades, but unseen by so many in the Demos Americanus with their touching wishful fantasies of caring and at worst benign bumbling rulers, clouding their persistently innocent eyes.

Saving everybody from the impending catastrophes of Climate Change is a task too gargantuan for accomplishing by individual efforts alone, even if in their simultaneous billions. It requires the complete attention and commitment to, and investment in, by all governments of the Industrialized World operating collectively and cooperatively. It would be the War Against Our Own Fossil-Fueled Frankensteinian Stupidity. But, your caring news media and governments want to reassure you that the time is not quite right to panic ‘ourselves’ into this unrealistic and unwise waste of (“their”) money (on you!), maybe down the road it will get more serious: delayism.

However, the panic to protect the divine right of the Big Money Kleptocracy to stay in the tax-free unearned income black is the foundational original sin of our (really their) capitalist nirvana. So, you can rest assured that the US Treasury printing presses will crank out any uncountable number of trillions of dollars — backed by the full faith and credit of the US military, and your tax offerings — to build whatever physical and socio-economic dikes are necessary to hold back the anticipated disasters to be spun off of Climate Change, and which could otherwise dampen the enthusiasm of WSG’ers in their enjoyment of mindless consumption (what they call “life,” but in the style of Dracula). Saving them is guaranteed, after all they are so few and they own everything anyway so why waste “the money” on who’s already designated waste?, it’s a no-brainer.

What can you do about it? Dream about guillotines, I guess, or watch big-screen TV cartoon super-hero movies and sport championships whose scores you’ll forget by next season; or get drunk if it won’t make you miss work and you have enough rent money; or buy lottery tickets and dream about sitting at the right hand of Ubu Roi hisself. You’re free to choose any of these. Just don’t let your corpse block the entrance to The Club when you go.

<><><><><><><>

American Climate Change Policy: You Don’t Matter
27 June 2019
https://www.counterpunch.org/2019/06/27/american-climate-change-policy-you-dont-matter/

<><><><><><><>

Black Gold, Maximum Entropy (Redux)

The following article is about fossil fueled (‘fracking’ fueled) global warming climate change. It was written in 2013 and remains completely up to date because nobody has done anything to change the situation — except perhaps to make it worse. This article contains a little bit of science, a little bit of Marxism from John Bellamy Foster, some criticisms of Mr. Foster’s views from me, and one of my better rants on society’s negligence regarding climate change (or, some pointed suggestions for social change). By 2013, I had reached pessimistic conclusions about humanity’s willingness to seriously address global warming, and also about the value of my continuing to write about it. That I do and continue to make positive and “utopian” suggestions for socio-political change is entirely to express my solidarity with today’s youth (I have children), because otherwise I have no faith whatsoever in “the adults.”

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Black Gold, Maximum Entropy (Redux)
20 June 2019 (21 October 2013)

In his extensive article “The Fossil Fuels War” in Monthly Review, John Bellamy Foster writes about the new expansion of oil exploration and production — the demise of Peak Oil — made possible by the development of technology to extract oil from “unconventional” sources, known variously as “shale oil” and “tar sands oil,” and he points to the inevitable consequences on climate. (1)

Those scheduled climatic effects are vividly presented in a new scientific report in which:

Scientists from the University of Hawaii at Manoa calculated that by 2047, plus or minus five years, the average temperatures in each year will be hotter across most parts of the planet than they had been at those locations in any year between 1860 and 2005. To put it another way, for a given geographic area, “the coldest year in the future will be warmer than the hottest year in the past,” said Camilo Mora, the lead scientist on a paper published in the journal Nature. (2)

John Bellamy Foster also notes that there have been recent improvements in renewable energy technologies, whose use could be expanded to replace a portion of the power generation infrastructures based on fossil fuels. However, he is pessimistic that such replacements could form a prompt and complete transformation of national and global power generation systems.

No less remarkable technological developments, however, have arisen at the same time in relation to renewable energies, such as wind and solar, opening up the possibility of a more ecological path of development. Since 2009 solar (photovoltaic) module “prices have fallen off a cliff.” Although still accounting for a tiny percentage of electric-generating capacity in the United States, wind and solar have grown to about 13 percent of total German electricity production in 2012, with total renewables (including hydroelectric and biomass) accounting for about 20 percent. As the energy return on energy investment (EROEI) of fossil fuels has declined due to the depletion of cheap crude-oil supplies, wind and solar have become more competitive – with EROEIs above that of tar-sands oil, and in the case of wind even above conventional oil. Wind and solar, however, represent intermittent, location-specific sources of power that cannot easily cover baseload-power needs. Worse still, a massive conversion of the world’s energy infrastructure to renewables would take decades to accomplish when time is short.

I disagree with this pessimism and believe a massive conversion to renewable energy technologies can be accomplished much more quickly than started in mass media and John Bellamy Foster’s article. I made my case with numerous suggestions, estimates and examples in an article, “The Economic Function Of Energy,” intended to spur positive, creative and practical thinking about such a near-future conversion of energy infrastructure on a national scale. For example, I described a solar-powered system for generating the total electrical power consumed in the United States, which would be publicly owned and thus provide “free” electricity. (3)

Foster notes the foundational motivation of the fossil energy industry as stated by one of its leading CEOs, “my philosophy is to make money.” Concerns over possible environmental damage (from exploration or spills) and climate change (from carbon dioxide and methane emissions) are seen as unfortunate collateral inevitabilities to be minimized as possible, but without delaying extractive operations or seriously diminishing profitability.

Foster gives a good general summary of what is required to make a complete conversion nationally (say for electrical power) from fossil fuels to renewables (solar, wind, hydro), but he sees such a conversion as too monumental a project for our time, while I see it as an exciting and feasible technical challenge, an inspiring project for technophiles that would be liberating for society. Foster writes:

It follows that building an alternative energy infrastructure — without breaking the carbon budget — would require a tectonic shift in the direction of energy conservation and energy efficiency. However, stopping climate change and the destruction of the environment in general requires not just a new, more sustainable technology, greater efficiency, and the opening of channels for green investment and green jobs; it requires an ecological revolution that will alter our entire system of production and consumption, and create new systems geared to substantive equality, and ecological sustainability — a “revolutionary reconstitution of society at large.”

Yes, developing a mass consciousness of energy conservation and energy efficiency in an American society of unthinking wastefulness may indeed seem like a “revolutionary reconstitution of society at large.” But the real revolution here would be in the awakening of greater thought among the masses, to displace the unthinking aspects of behavior that enable wastefulness. That apparent barrier to the energy revolution would dissolve if confronted with forthright and consistent effort by the political leadership. The unappealing aspects of continuing climate change will undoubtedly increase the popularity of the idea of making such a revolutionary transition. As Foster says: “In today’s world, the undermining of the lifeworld of the great majority of the population is occurring in relation to both economy and environment.”

John Bellamy Foster sees the conversion of most power generation infrastructure from a reliance on fossil fuels to renewables as too daunting a technical challenge for the near term, and he believes that worsening climate change will spur the rise of popular movements that could revolutionize society so that it meets the energy conversion challenge in the long term.

We can therefore expect the most radical movements to emerge precisely where economic and ecological crises converge on the lives of the underlying population. Given the nature of capitalism and imperialism and the exigencies of the global environmental crisis, a new, revolutionary environmental proletariat is likely to arise most powerfully and most decisively in the global South.

I believe just the opposite, that the technical challenge is well within present capabilities and has been for many years, but that the conversion to renewables will never occur because most people operate from mental inertia that is programmed to keep them on the rails of the capitalist economics and environmental exploitation we see today.

People everywhere want to replicate and experience the advantages of the colonial powers of the 19th century (e.g., Britain) and the industrial-consumerist powers of the 20th century (e.g., the U.S.A.). This is why China builds huge dams and burns enormous quantities of coal, fatally fouling its air; and why southern Europe and the southern U.S. are flooded with economic refugees from the “global South.”

James Hansen is quoted in Foster’s article saying “It is not an exaggeration to suggest, based on the best available scientific evidence, that burning all fossil fuels could result in the planet being not only ice-free but human-free.”

And this is precisely what will happen, because “my philosophy is to make money” is the end-all-and-be-all everywhere, whether in rich northern capitalist states or the impoverished global south seeking “to develop.”

Foster concludes his article with lyrically wishful Marxist romanticism.

Under these conditions what is needed is a decades-long ecological revolution, in which an emergent humanity will once again, as it has innumerable times before, reinvent itself, transforming its existing relations of production and the entire realm of social existence, in order to generate a restored metabolism with nature and a whole new world of substantive equality as the key to sustainable human development. This is the peculiar “challenge and burden of our historical time.”

There is no objective evidence to suggest this is anything other than a fantasy. Instead, it seems realistic to conclude that humanity’s conceptual and social limitations will lead to its premature extinction sooner than need be the case because of the onset of hostile environmental conditions due to the sun expanding into a red giant. Such a premature extinction would not be a “bad thing” for Planet Earth, which would continue unperturbed without another of the millions of species that have appeared and disappeared during the course of life on Earth. Other forms of life will continue; why should we imagine that humanity is so special that it deserves particular concern as regards continuing to be one of the carriers of life on this planet?

Many people besides archeological scholars have wondered why the Maya people in the southern lowlands of Central America abandoned their splendid stone ceremonial cities and pyramids about 1000 years ago, and which now lie in ruins under jungle vegetation. (4) The basic reason was that the ancient Mayan public dumped the excessive overhead of a top-heavy oppressive and burdensome culture during a time of environmental stress (droughts) so as to better attend to personal survival. Manning wars of rivalry between royal elites did not ultimately satisfy the basic needs of the “proletariate.” They did not so much revolt to establish a new social order as simply walk away into the jungle to disappear from the existing order, letting it collapse from lack of support. If a similar disorganized mass movement of abandonment of the organized economy and socio-political class structure were to take hold for most of the “proletariate” today then one could begin to speculate about the possibilities for the emergence of alternative types of post-capitalist societies, and following that to speculate on a new relation of humanity to the environment and the prospects for an extended period of highly developed human culture on Planet Earth.

Humanity is terminally delirious with fossil fuel fever. “Climate change will proceed unhindered, as will the uninterrupted rush by humanity to exploit all sources of fossil fuels. The moral choice between restraint for the good of all life versus gaining an immediate boost to private power will always be won by the latter.” My conclusion is not what I want, but what I see as the inevitable consequence of what is. (5)

Matthew Auzanneau has written about one example of humanity’s fossil fuel delirium, the necessarily short-lived shale oil boom in North Dakota and the avid involvement of the investment banking firm of Goldman Sachs in it, putting their philosophy into practice “to make money.” I see Auzanneau’s article as support for my gloomy conclusion, and it was the launching point for my concluding rant. (6)

I think that people will overwhelmingly do nothing in the form of restraint on CO2 emissions and yet be frantic about gouging out every ounce of oil and coal they can get to ASAP (e.g., China, North Dakota), to burn it up and drive whatever power and money schemes they are pushing. As a result, I no longer have any enthusiasm for writing about alternative energy systems. Most people simply want to maintain the inertia of their current thinking and economic activity, to maintain their present forms of exploitation (businesses). They do not want any changes to their existing modes of energy waste and financial accumulation (e.g., fracking for domestic-use oil, mining shale oil and coal for export, big engines in oversized truck-like cars for mindless driving, suburbia, capitalism commodifying and discounting the environment), just more of the same so they can “get their share,” especially “before it runs out.” Hurricanes, tornadoes, rising seas, droughts, months-long wildfires, the spread of tropical diseases and parasites to temperate latitudes, none of that matters in comparison to keeping on with getting “more.” We have a quarterly profits expectation, long-term attention-deficit syndrome, infantile hyperactive, selfish spoiled-brat economic mentality. Nobody but nobody wants to be the first person, or in the first class or generation to “make the sacrifice” to “give up the advantages” of our eco-catastrophic ways in order to shift a nation, and humanity, to a sustainable alternative. Planet Earth could care less, it will shrug us off as just one more ephemeral slime mold, and our dust will be ground into the grains of future rocks over which advanced cockroaches will stride, perhaps as rulers of Planet Earth.

Actually, the disintegration we see and can anticipate fits in well with the trend to be expected from the Second Law of Thermodynamics, the relentless increase of entropy — disorder — with the widest dispersal of energy and structure (into lack of structure) as the ultimate end.

Any physical system that can absorb and emit energy, and perform work on other physical systems external to it, is a thermodynamic system (e.g., the combustible gas mixture within a piston engine cylinder). The Second Law of Thermodynamics states that any isolated thermodynamic system must ultimately degrade; such degradation is quantified as an increase in the thermodynamic property of the system called its entropy. Consequently, all real engines convert energy (e.g., heat) to work (e.g., torque) with less than 100% efficiency, perpetual motion machines are impossible, and the entropy of the entire universe relentlessly increases.

The great physicist Ludwig Boltzmann committed suicide (in 1906) while in a state of clinical depression it is said after contemplating the implacable increase of universal entropy, his most penetrating discovery about statistical (many particle) thermodynamic systems. Clearly, he had a strong belief that humanity mattered. Perhaps if he had been able to overcome that misconception he would not have fatally despaired. His gravestone in the Central Cemetery in Vienna is inscribed with his famous formula for the entropy of a statistical thermodynamic system, S = k·Ln(W), where S is the entropy of a thermodynamic system, k is Boltzmann’s constant (1.38065 x 10^-23 joules/degree-Kelvin), Ln is the mathematical function called the natural logarithm, and W is Wahrscheinlichkeit, a German word meaning the number of (unobservable) “ways” in which the (observable) thermodynamic state of a system can be realized by assigning different positions and momenta to the many molecules of that system. (7)

W can be thought of as the number of ways the system can arrange itself microscopically (its multitude of molecular positions and velocities) so as to exhibit a specific set of values of observable macroscopic properties (a thermodynamic state), like: temperature at 70 degrees Celsius, pressure at 101,325 Pascals or equivalently 14.696 pounds per square inch (psi). A thermodynamic state that can only be achieved by any of a small number of possible microscopic arrangements is one of high order and has low entropy. A thermodynamic state that can be achieved with any of a large number of possible microscopic arrangements is one of low order, that is to say of disorder, and has a high entropy. At the inception of the Big Bang, the universe was a point of energy and its entropy was very low. Today, 13.8 billion years later, the universe is an expanse of perhaps 1.3 x 10^23 km that is largely void with a sparse scattering of matter and radiation, and historically maximum entropy.

Here on Earth the black gold rush will eventually burn itself out and bequeath us a state of increased disorder that devoured opportunities for transformation.

Acknowledgment: Gilles d’Aymery brought my attention to Notes 1 and 6, which spurred me to write this article.

Notes
[except for more recent re-postings in 3 and 5, websites were active on 21 October 2013]

1.  John Bellamy Foster, “The Fossil Fuels War,” Monthly Review, 2013, Volume 65, Issue 04 (September), http://monthlyreview.org/2013/09/01/fossil-fuels-war

2.  Justin Gillis, “By 2047, Coldest Years May Be Warmer Than Hottest in Past, Scientists Say,” The New York Times, October 9, 2013,
http://www.nytimes.com/2013/10/10/science/earth/by-2047-coldest-years-will-be-warmer-than-hottest-in-past.html?_r=0

3.  Manuel García, Jr., “The Economic Function Of Energy,”
Swans, 27 February 2012,
http://www.swans.com/library/art18/mgarci41.html
updated re-posting:
Energy For Society In Balance With Nature
8 June 2015
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

4.  “Classic Maya Collapse”
http://en.wikipedia.org/wiki/Classic_Maya_collapse

5.  Manuel García, Jr., “Winter Reflections, 2012,” Swans, 17 December 2012,
http://www.swans.com/library/art18/mgarci59.html
updated re-posting:
Winter Reflections (recycled)
31 December 2016
https://manuelgarciajr.com/2016/12/31/winter-reflections-recycled/

6.  Matthew Auzanneau, “The short future of oil shale boom seen by Goldman Sachs,” October 8, 2013,
http://translate.google.com/translate?hl=en&sl=fr&u=http://petrole.blog.lemonde.fr/2013/10/08/le-court-avenir-du-petrole-de-schiste-vu-par-goldman-sachs/&prev=/search%3Fq%3Dle-court-avenir-du-petrole-de-schiste-vu-par-goldman-sachs
[A Google translation of Matthew Auzanneau’s blog in French, which focuses on oil. This post is about the Goldman Sachs involvement with the shale oil boom in North Dakota.]

7.  “Ludwig Boltzmann”
http://en.wikipedia.org/wiki/Ludwig_Boltzmann

<><><><><><><>

Originally published as:

Black Gold, Maximum Entropy
21 October 2013
http://www.swans.com/library/art19/mgarci73.html

<><><><><><><>

Linking Energy Use And Human Development

This is a re-posting of my report An Introduction Linking Energy Use And Human Development, from 28 April 2006 — unchanged. This is another of my personal favorites. A PDF copy of the report is available through the web-link given below.

An Introduction Linking Energy Use And Human Development
28 April 2006
https://manuelgarciajr.files.wordpress.com/2011/11/efhd_r_01.pdf

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>



























<><><><><><><>

<><><><><><><>

Of related interest and more recent:

Energy for Human Development
9 November 2011
https://manuelgarciajr.com/2011/11/09/energy-for-human-development/

Energy for Society in Balance with Nature
8 June 2015 (27 February 2012)
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

Our Globally Warming Civilization
2 June 2019
https://manuelgarciajr.com/2019/06/02/our-globally-warming-civilization/

Oil, Population, Temperature, What Causes What?
9 June 2019
https://manuelgarciajr.com/2019/06/09/oil-population-temperature-what-causes-what/

<><><><><><><><><><><><><><><><><><><><><><><><><><><>

Our Globally Warming Civilization

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Our Globally Warming Civilization

The 150 years of the Industrial Revolution (~1770-1920), with its catastrophic and bloody termination in World War I (1914-1918), had no noticeable effect on the global average temperature, which had hovered around 14.7 degrees Centigrade (C) since antiquity. The human population had taken 200,000 years (more or less) to grow to one billion (1B), in 1804, within the natural and majestic evolution of global climates during those 2000 centuries, (1).

By 1927, the human population had increased to 2B. The 1920s were economic boom years in the Industrialized World (give or take some post WWI German misery, the Russian Revolution, and Chinese civil warfare) with the liquid petroleum replacing the solid coal as the fossil fuel of choice for transportation vehicles; and the explosion in the craving for, and manufacture and use of, internal combustion engines and the automobiles powered by them.

After 1927 the rate of population growth increased from what it had been on average during the previous 123 years (about 8 million per year, ~8M/yr) to an average rate of 29M/yr, to accumulate another 0.7B people in the 26 years up to 1953, when the population was 2.7B. Those 26 years between 1927 and 1953 spanned the crescendo of the Roaring ‘20s, the capitalist economic collapse of 1929, the Great Depression (1929-1942), World War II (1939-1945), the Second Sino-Japanese War (1937-1945), and the Chinese Communist Revolution and Civil War (1946-1949).

I estimate that the cumulative amount of petroleum produced (pumped out and used up) by 1953 was 98.6 billion barrels (98.6 giga-barrels, 98.6Gb), (2). This implies that since about 1900, when civilization’s use of petroleum as a fuel began in earnest, it consumed 602 giga-GJ (602 x 10^18 Joules) of energy (equivalent to 168 mega-GWh = 168 x 10^9 MWh = 168 giga-mega-watt-hours) to power itself up to 1953, (3).

By 1960, the world’s human population had reached 3B, and the rate of population growth was accelerating (having been about 43M/year during the previous 7 years). From 1960 to the present day, the trend of cumulative production of petroleum, Q, has been proportional to the rising trend of human population, in the ratio of 272 barrels of oil per person (272 b/p).

Specifically, my approximating formula for Q, the accumulated production of oil in giga-barrels (Q, in Gb), given as a function of the population in billions (P, in B) for a given year within the interval 1960 to 2025 is:

Q(year) = [P(year) – 2.7B] x (272 b/p).

This approximation gives an accumulated production up to 2015 (with population 7.35B) of

Q(2015) = 1265Gb, (approximation).

By integrating the actual production rate-per-year curve (the “Hubbert curve” for world production, in GB/yr) given by Laherrere (2), I find the actual accumulated production up to 2015 to be:

Q(2015) = 1258Gb, (actual).

The rate of oil production is now likely at its peak of between 25 Gb/yr to 35 Gb/yr during this 20 year interval between 2005 and 2025, (2),(4). Thereafter, it should drop rapidly since current oil fields have diminishing production, there have been no major oil field discoveries since the 1970s and the frequency of discovery has steadily diminished since then. That means that over half of Earth’s original total reserves, estimated at 2,200Gb (2), have already been extracted. The “end-of-oil” seems destined for the last two decades of the 21st century.

Assuming all that oil was burned, up to the year 2015 (115 years since 1900), civilization would have used 7,674GGJ, (7,674 x 10^18 Joules), equivalent to 2,139GMWh, (2,139 x 10^15 Watt-hours) of energy, derived from that 1258Gb of petroleum, to power itself.

That burning would have released 398,786Gkg (~4 x 10^14 kg = ~400 giga tonnes) of CO2, (5). At present (May 2019) there are about 3,250 giga tonnes of CO2 in the atmosphere, with an average concentration of 415 parts per million by volume (415ppmv), (6). 1228 G tonnes of that CO2 is excess above the pre-industrial amount in the atmosphere. The ~400 G tonnes estimated here as the accumulated emissions from the prior burning of petroleum (up to about 2015) is only about one-third of the excess atmospheric CO2.

There are numerous other processes in our civilization, as well as in the natural world, that cause the emission of carbon-dioxide and its atmospheric retention in excess amounts. The main sources of CO2 emissions are the exhalations from aerobic respiration by all of Earth’s living heterotrophs, decaying plants, and volcanic eruptions. Other sources include: the burning of coal and natural gas, forest and vegetation fires caused naturally and by slash-and-burn agriculture, the bubbling out of CO2 from warming oceans no longer able to dissolve as much of that gas as before, and the massive amount of past and continuing forest clearing that has reduced Earth’s natural system of CO2 uptake — photosynthesis. The cement industry is one of the two largest producers of anthropogenic carbon dioxide, creating up to 5% of worldwide man-made emissions of this gas, of which 50% is from the chemical process and 40% from burning fuel, (7).

Methane (CH4) is a very potent greenhouse gas, being 30 times more effective than CO2 at trapping heat. “For each degree that Earth’s temperature rises, the amount of methane entering the atmosphere from microorganisms dwelling in lake sediment and freshwater wetlands — the primary sources of the gas — will increase several times. As temperatures rise, the relative increase of methane emissions will outpace that of carbon dioxide from these sources.” (8) Other sources of methane emissions are: rotting organic wastes, termite colonies, and bovine flatulence from industrialized agricultural sites. The globally warmed thawing Arctic tundra is now a region of major methane eruptions.

Up until 1974, when the human population had reached 4B, Earth’s climate system had yet to become feverish over the previous 200,000 years of collective human activity. However, at about that time the average global temperature began increasing at a historically unprecedented rate because of civilization’s heated and organic outgassing, a process which continues today as anthropogenic global warming, (9).

In fact, the date at which collective human activity began to affect and alter Earth’s climate system has now been pinpointed to somewhere between October to December 1965. That date marks the end of the Holocene Epoch of geologic history (which began 11,700 years previously, after the last Ice Age), and the beginning of the Anthropocene Epoch — the epoch of human-affected climate, globally. The physical phenomenon marking this transition is that Carbon-14, a radioactive isotope released during open-air atomic and nuclear bomb explosions between 1945 and 1963, had finally dispersed uniformly around the globe, and become absorbed into tree tissues even in the remotest parts of the world, thus recording that uniformity (10).

Between 1960 and 2025, the three rising trends of: population (P), cumulative oil production (Q), and increase of average global temperature above baseline (T – 14.7C = delta-T), are all uniformly proportional to one another.

Specifically (for years between 1960 and 2025) T, P and Q are related to each other as follows:

[T(year) – 14.7C] = [P(year) – 2.7B]/3.3B = [Q(year)/(900 Gb)],

where the forms above are each equivalent to a temperature difference relative to the baseline of 14.7C (delta-T, in degrees C).

Notice that if T = 15.7C, and P = 6B, and Q = 900 Gb, then the equality above holds, with: 1 = 1 = 1. This particular condition actually occurred during 1999.

During this 65 year interval, a 1 degree C rise in temperature (above 14.7C) is coincident with a 3.3B increase in population (above its 1953 level of 2.7B), which in turn is coincident with a production (and use) of 900Gb of petroleum.

The population is growing from 3B in 1960 to an expected 8B in 2028 during this 68 year interval, with an average population increase of +73.5M/yr. Within these 68 years, and especially during the 55 years from 1970 to 2025, the rising trends of (T – 14.7C), (P – 2.7B)/3.3B, and Q/(900Gb) are in lockstep. This period — with explosive population growth, depletion of over half of the Earth’s petroleum endowment, and with an unprecedented rate of global warming — began in the last year of the Eisenhower Administration, 1960, when John Kennedy was elected US President, and extends right up to the present (and beyond it).

The average global temperature will have climbed up from ~15C to ~16.2C during this interval, a relative rise of 1.4C, and a rise of ~1.5C (delta-T = ~1.5C) above the pre-industrial temperature, defined here as 14.7C (58.46 degrees Fahrenheit). That 1.5C (2.7F) warming above the pre-industrial temperature represents a tremendous amount of heat energy diffused throughout the biosphere, and the deleterious effects of that excess heat are self-evident to all: the altering of climate; the powering of violent weather; the heating and acidifying (with absorbed CO2) of the oceans, sterilizing them of marine life; the melting of glaciers and thawing of tundras; the causing of carbon dioxide and methane to bubble out of solution and frozen capture in the natural world (in a vicious feedback loop); the expansion of disease pathogens and tropical parasites; and the added stresses to both wild and farmed vegetation, and increased desertification, which result in human hunger and desperate migrations of impoverished refugees.

Now, our civilization is starting to suffocate in the lingering heat of its previous exhalations. The singular challenge to our species and to our political economies is what to do, collectively, about global warming. That challenge remains largely unanswered, and tragically denied by too many people .

Notes

1. World population is estimated to have reached one billion for the first time in 1804. It was another 123 years before it reached two billion in 1927, but it took only 33 years to reach three billion in 1960. The global population reached four billion in 1974 (14 years later), five billion in 1987 (13 years later), six billion in 1999 (12 years later), and seven billion in October 2011 (12 years later), according to the United Nations, or in March 2012 (13 years later), according to the United States Census Bureau.
https://en.wikipedia.org/wiki/World_population

World population by year
https://www.worldometers.info/world-population/world-population-by-year/

2. Jean Laherrere, World Crude Oil Production, (brown line), April 2015
https://upload.wikimedia.org/wikipedia/commons/4/46/World_crude_discovery_production_U-2200Gb_LaherrereMar2015.jpg

3. The energy released from combusting 1 barrel of oil is 6.1 giga-joules (6.1 GJ), which equals 1.7 MWh (1.7 mega-watt-hour).
https://en.wikipedia.org/wiki/Barrel_of_oil_equivalent

4. Worldwide, around 92.6 million barrels of oil were produced daily in 2017.
https://www.statista.com/statistics/265203/global-oil-production-since-in-barrels-per-day/
~73 million barrels/day in 1998, rising since.
73 Mb/day = 26.7 Gb/yr (1998)
93 Mb/day = 34.0 Gb/yr (2017)
During 20 years of production (1998-2017) the rate rose 20 Mb/day = +1 MB/day/year

5. Burning one barrel of petroleum can produce between 317kg (realistically) to 433kg (theoretically) of CO2:
Realistic
http://numero57.net/2008/03/20/carbon-dioxide-emissions-per-barrel-of-crude/
Theoretical
https://www.answers.com/Q/How_much_CO2_produced_by_burning_one_barrel_of_oil
Therefore, the CO2 emitted by combusting 1b = 317kg CO2.

6. As of January 2007, the earth’s atmospheric CO2 concentration is about 0.0383% by volume (383 ppmv) or 0.0582% by weight. This represents about 2.996×10^12 tonnes (1 tonne = 1000kg), and is estimated to be 105 ppm (37.77%) above the pre-industrial average (~278 ppmv).
https://micpohling.wordpress.com/2007/03/30/math-how-much-co2-by-weight-in-the-atmosphere/

415 ppmv of atmospheric CO2, as of May 2019
https://en.wikipedia.org/wiki/Carbon_dioxide_in_Earth%27s_atmosphere

Therefore:
(415/383) x 3000 G tonnes = 3,250 G tonnes, (May 2019).

7. Environmental impact of concrete
https://en.wikipedia.org/wiki/Environmental_impact_of_concrete

8. Methane is roughly 30 times more potent than CO2 as a heat-trapping gas
https://www.sciencedaily.com/releases/2014/03/140327111724.htm

9. I first constructed the simplified plot of average global temperature in 2004, using data from public sources. Details about that construction and the data used are given at:
Population, Oil and Global Warming, 31 May 2019 (15 March 2004)
https://manuelgarciajr.com/2019/05/31/population-oil-and-global-warming/

10. The Anthropocene Epoch began sometime between October and December 1965.
https://manuelgarciajr.com/2018/02/23/the-anthropocenes-birthday/

<><><><><><><>

Population, Oil and Global Warming

Our ignorance is not so vast as our failure to use what we know.
—M. King Hubbert (1903-1989)

<><><><><><><><><><><><><><>

This article is identical to:

Oil, Population And Global Warming
15 March 2004
http://www.swans.com/library/art10/mgarci10.html

The only change is the addition of the graphs (below), which I made today (30 May 2019).

Numbers beyond the year 2020 are speculative (by the sources cited). Numbers for oil used to date (globally) are less certain than the numbers for population and average global temperature. The temperature history has been simplified (you can find very detailed data if you wish). Oil extraction by fracking since ~2000 (and since this article was originally published, in 2004), has drastically changed the numbers for oil production in the United States.

<><><><><><><><><><><><><><>

Future historians will look back on the 200 years of the 20th and 21st centuries as the Oil Period in world history. During this time, the latent heat of buried petroleum will have been mined and released into a dramatically warmed and crowded planetary surface. In the century from 1950 to 2050, the world will have shifted from one with 2.7 billion people, 96% of its petroleum reserves intact, and insignificant global warming, to one with perhaps over 9 billion people, less than 10% of its petroleum reserves left and a 2 °C average global temperature rise. For perspective, during the last Ice Age — about 16,000 years ago — the average global temperature was 4 °C (7 °F) below the 1860 to 1920 average of 14.7 °C (58.5 °F).

What will be the politics of a hot, crowded world without oil, and possibly on the brink of abrupt climate change?

Oil

Within the sixty years from 1970 to 2030, we will have used up about 80% of the world’s oil, the peak rate of production occurring now, during these few years about the turn from 20th to 21st century. Half of the world’s oil endowment has already been used. Efforts at conservation and improved extraction technology may extend till the years 2007 to 2013 when the oil production rate will peak (at about 26 billion barrels/year, or 70 million barrels/day). Inevitably, beyond this time the rate of oil extraction will diminish.

The bell-shaped curve of oil production rate variation over time is called the Hubbert Peak, in honor of the late geophysicist who — in 1949 — first predicted the brevity of the fossil fuel era. Hubbert’s 1956 prediction that US oil production would peak in 1970 and then decline was scoffed at, but he was proven exactly correct. (1), (2)

Today [15 March 2004], over 87% of the oil endowment in the continental U.S., and over 95% of that in Alaska have been consumed. America uses 28% of the world’s yearly oil production, producing 12% domestically, and importing the remaining 16%. Americans consume oil at six times the rate of the world average (25 versus 4 barrels/person/year). America imports oil to supply 29% of the energy it consumes, domestic oil supplying another 12%, so that 41% of our energy comes from oil. This fact is fundamental to national planning. (3), (4)

Oil used (accumulated giga-barrels, GB) by a given year (estimated)

People

World population increased at an accelerating rate until 1990 (when 85 million people joined us), and has continued increasing at a diminishing pace since. The world family was 2 billion people in 1930, 3 billion in 1959, 4 billion in 1974, 5 billion in 1987, and 6 billion in 1999. Estimates published by the US Census Bureau show a potential world population of 7 billion by 2013, 8 billion by 2028, and 9 billion by 2048. The future US population is estimated to be 4.5% of the world total, as it is today. (5)

World population (billions, B) vs. year

Temperature

Instrumental records of global surface temperature begin in 1860. The average global surface temperature for the period between 1961 and 1990 was 15 °C (59 °F). The deviations of global surface temperature, relative to the reference temperature of 15 °C, are — very generally! — as follows: -0.4 °C prior to 1920, a rise to 0 °C by 1940 (being at 15 °C), a plateau at +0.1 °C during 1940-1945, a lower plateau at -0.05 °C during 1945-1975, a rise to +0.6 °C by 2000. The actual year-to-year variations within each of these five periods are within a swing of 0.2 °C either way. (6), (7)

The temperature rise after 1975 is unprecedented (averaging +0.03 °C/year). The temperature today is 1°C (1.8 °F) warmer than in the late 19th century. The initial 40% of this temperature rise took 55 years, while the final 60% only required 25 years.

It is interesting to view the finely-detailed temperature history presented by the United Nations Environment Programme, and to imagine the warming trend beginning in 1920 as reflective of the oil boom then underway, as the industrialized nations moved from coal to petroleum for their energy; and to the warmth during WWII, which was not equaled until the 1980s.

Predictions of global warming above the early 20th century temperature of 14.7 °C are +2.3 °C in 2050 (between +1.5 °C and +3 °C), and +3.3 °C in 2100 (between +2.1 °C and +6.5 °C). (8)

Average global temperature (degrees Centigrade, C) vs. year (simplified)

Is it possible to directly relate temperature rise with human activity? For example, linking fossil energy, greenhouse gases, and global warming? What about fossil energy, industrialized agriculture, energy-intensive social systems and human population? Finding causal links to global warming is a scientific problem of great complexity, and one that has engaged many scientists for at least two decades. (9), (10)

However, without appealing to causal arguments, it is sometimes possible to show that trends for two phenomena coincide. If so, some limited insight might be found by contemplating this.

Proportionality, people and oil

The growth of human population, the depletion of oil resources and the rise of global temperature each mirror one another to a remarkable degree, a result that can be arrived at from the data and projections already described.

The world population of 2.7 billion by 1953 can be taken as a base that required negligible petroleum energy to produce. The addition of people beyond this level is fueled at a rate of 264 barrels of oil per person.

So, population minus the base equals cumulative oil production in barrels divided by 264 (equation 1).

For example, today’s population of 6 billion required the expenditure of 871 Gb (Gb is for Giga-barrel, or 1 billion barrels); the actual consumption by January 1999 was 857 Gb. Similarly, a projected population in 2050 of 9 billion would coincide with an accumulated depletion of 1,663 Gb, or 95% of the estimated 1,750 Gb of the world’s oil endowment.

The actual population and cumulative oil production data between 1950 and 2000 correlate startlingly well with the proportionality and offset (base population) given here. The projections to 2050 also correlate extremely well, but of necessity they contain uncertainties only time can clarify.

Proportionality, people and temperature

By direct comparison, the trends of temperature rise above 14.7 °C (the pre-1920 plateau) and population growth mirror each other after 1975 with a proportionality of 3.3 billion people per °C.

So, the difference of population minus base, divided by 3.3 billion equals the temperature difference above 14.7 °C (equation 2).

For example, the 6 billion people of today coincide with a rise of 1 °C to 15.7 °C (60.3 °F), and the projected 9 billion people of 2050 would coincide with a rise of 1.9 °C to 16.6 °C (61.9 °F).

Proportionality, temperature and oil

By a ratio of the previous two proportionalities, one finds that for each 870 Gb of oil produced, the global surface temperature rises by 1 °C.

So, cumulative oil production in barrels divided by 870 Gb equals temperature rise above 14.7 °C (equation 3).

It has already been noted that today we have a global warming of about 1 °C above the 19th century level of 14.7 °C, and that just over 857 Gb of oil have been extracted; this matches the proportionality of 870 Gb/°C. The anticipated global warming in 2050, with 1663 Gb of oil having been extracted, would be 1.9 °C, for a temperature of 16.6 °C (61.9 °F).

Summary of proportionalities

Three proportionalities: 264 barrels/person, 3.3 billion people/°C, and 870 Gb/°C, correlate the data and projected trends in world population (above a base of 2.7 billion), cumulative oil production and global warming (above 14.7 °C). Population and oil production are correlated from 1950, while all three quantities are correlated after 1975.

Population (blue), oil (brown) scaled to match temperature rise (red) above 14.7 C, 1850-2050, (see text, proportionalities)

Population (blue), oil (brown) scaled to match temperature rise (red) above 14.7 C, 1950-2050, (see text, proportionalities)

Population (blue), oil (brown) scaled to match temperature rise (red) above 14.7 C, 1950-2020, (see text, proportionalities)

What’s Next?

Are we to believe that these correlations will remain intact until the world’s oil is exhausted? Will we really age to 2050 with an accumulation of 9 billion people, no petroleum, and unchanged climate despite a heating of unprecedented magnitude, comparable to the cooling of the Ice Ages?

Many find it easy to fantasize from this point: ice caps melt, oceans swell, shorelines recede so that countries like the Netherlands and Bangladesh disappear; jungles and deserts expand but in different locations than at present, waves of extinction and population-drop sweep the animal kingdom, equatorial zone agriculture collapses, massive migrations spark wars; America, Europe and Japan militarize heavily, including space, to capture foreign resources and repel invaders and refugees; America invades Canada because the ‘corn belt’ has moved north to the former tundra; the exploding price of oil spurs a frenzy of invention into synthetic fuels and alternate forms of energy, as well as a return to coal and a depletion of timber; sunny territory is invaded and conquered by foreign armies, and used for solar energy plantations by a colonial elite who export the accumulated energy to their imperial homelands.

Politics (finally!)

In fact, we don’t know what will happen, or when. But, we can “use what we know” to begin rational planning now for a transition to a new method of powering our society (particularly transportation systems), and of weaning ourselves from imported energy and the imperialism it seems to require. It would also be wise to rearrange our politics, that is to say remove the inequities between economic classes, so that our nation can retain its integrity while facing the environmental, economic and political pressures to be expected with a shift to a post-petroleum world. The added stress of a civil war during such a time would be tragically cruel.

Such planning is unlikely — at best very difficult — in America, because business has a quarterly-profits myopia, and the electorate in the suburban American “heartland” is thoroughly indoctrinated in capitalist ideology, with an anti-socialist “every man for himself (and women too)” attitude. The world’s revenge for our past imperialism may well be realized by our lack of social planning for the inevitable shocks of the collapse of the oil-powered economy, accompanied by a climate shift.

There are no physical reasons, no “laws of nature” that prevent us from devising an alternative way of organizing and powering our American society. There would certainly be many technical problems and intellectual challenges, but we have the means to prepare for what we can predict is likely to unfold. An enduring society would do this on a continuing basis. To me, that is socialism. Sometimes it’s as simple as seeing that everyone is in the boat, and they’re all rowing in the same direction.

In looking at our political figures, which ones seem to concern themselves with just the self-interest of one or another faction, and which ones seem to concern themselves with the good of the “whole boat?” We need leadership that can draw our involvement into long-term, democratic, social planning that achieves dependable commitments. We need such a process to bear fruit this decade, and we need a well-understood general plan for embarking on an intentional social transformation. If not, we will be the witless victims of a foreseeable catastrophe of our own making.

Notes

1.  “Hubbert Peak of Oil Production” – http://www.hubbertpeak.com (as of 29 February 2004).

2.  James M. MacKenzie, “Oil as a finite resource: When is global production likely to peak?” World Resources Institute, 1996 & 2000 – http://www.wri.org/climate/jm_oil_000.html (as of 24 February 2004).

3.  Energy Information Administration, U.S. Department of Energy – http://www.eia.doe.gov (as of 28 February 2004).
“Energy in the United States: 1635-2000” – http://www.eia.doe.gov/emeu/aer/eh/frame.htm
“25th Anniversary of the 1973 Oil Embargo” – http://www.eia.doe.gov/emeu/25opec/anniversary.htm
“U.S. Total Petroleum Consumption” – http://www.eia.doe.gov/emeu/25opec/sld007.htm
“Imported Oil as a Percent of Total U.S. Consumption” – http://www.eia.doe.gov/emeu/25opec/sld002.htm

4.  U.S. Department of Interior, Press Release, 19 March 2003 – http://www.doi.gov/news/030319.htm (as of 28 February 2004).

5.  Bureau of the Census, U.S. Department of Commerce “Population Clock,” – http://www.census.gov/main/www/popclock.html (as of 28 February 2004).
“World Population Information” – http://www.census.gov/ipc/www/world.html
“Total Midyear Population for the World: 1950-2050” (table) – http://www.census.gov/ipc/www/worldpop.html
“World Population: 1950-2050” (graph) – http://www.census.gov/ipc/www/img/worldpop.gif
“Historical Estimates of World Population” – http://www.census.gov/ipc/www/worldhis.html
“Annual World Population Change: 1950-2050” – http://www.census.gov/ipc/www/img/worldpch.gif
“Methodology and Assumptions for the Population Projections of the United States: 1999 to 2100” – http://www.census.gov/population/www/documentation/twps0038.html

6.  “Trend in global average surface temperature,” United Nations Environment Programme / GRID-Arendal – http://www.grida.no/climate/vital/17.htm (as of 24 February 2004).

7.  Intergovernmental Panel on Climate Change (IPCC) of the United Nations Environment Programme (UNEP) – http://www.unep.ch/ipcc (as of 28 February 2004).
“Variations of Earth’s surface temperature for the past 140 years (global), and the past 1000 years (Northern Hemisphere)” – http://www.unep.ch/ipcc/present/graphics/2001syr/large/05.16.jpg
“Variations of the Earth’s surface temperature: years 1000 to 2100” – http://www.unep.ch/ipcc/present/graphics/2001syr/large/05.24.jpg

8.  The reference temperature in [6] is 15.08 °C (the 1961-1990 average), while in [7] it is 15.43 °C (the 1990 value). This article uses the 1860-1920 plateau (estimated average) of 14.7 °C as the reference for global warming. So, the data and projections of temperature “deviations” and “variations,” from [6] and [7], have been adjusted to ensure consistency in describing global warming.

9.  “Global Warming,” National Oceanic and Atmospheric Administration – http://lwf.ncdc.noaa.gov/oa/climate/globalwarming.html (as of 24 February 2004)

10.  “What is Climate Change,” Government of Canada – http://www.climatechange.gc.ca/english/issues/what_is/index.shtml (as of 24 February 2004).

<><><><><><><>

The Latent Heat of Climate Change, Redux

The equations for the chemical-hydrodynamics and chemical-thermodynamics of global warming/climate change are non-linear. For this type of physics, the independent variables are (usually) time (t) and energy (h, enthalpy). So, a physical quantity like average global temperature (T) can be taken as related to average CO2 concentration (Xco2) as:

T(Xco2),

but it is not known if this is a single valued function (i.e., has a unique value of T for a unique value of Xco2). The graphs in the article below show examples of functions (curves) that are not single valued. Such multi-valued functions are non-linear. Non-linear functions (in math, and non-linear effects in physics) can exhibit “delays” and abrupt accelerations beyond some threshold value of the driving independent variable.

Now, in the case of our Earth’s climate, CO2 average concentration is a function of time; over time Nature and humanity release more CO2 into the atmosphere:

Xco2(t).

The rate at which these releases occur can vary (some sequence of decreases and increases) over time:

d(Xco2)/dt is itself a function of t.

So, T can be seen to be a nonlinear function explicitly of Xco2 and implicitly of t:

T(Xco2(t)).

Now, realizing that there are hundreds (thousands?, more?) of “variables” that affect the momentary numerical value of T; and with many similar multi-variable — and nonlinear — dependencies of other significant physical and chemical quantities, it is easy to see that simple single-valued (and single independent variable) functional predictability just doesn’t exist for global warming. This is why the popular literature on global warming talks about “thresholds” and “tipping points” — unknown values of a driving independent variable, like Xco2, above which all hell breaks loose.

The purpose of The Latent Heat of Climate Change, is to give an inkling of the unpredictability of nonlinear, multi-variable phenomena, by describing a much simpler and well-known physical phenomena: the liquid-to-vapor phase change of water.

The Latent Heat of Climate Change
29 July 2013

Why is Global Warming stagnating? (1) I do not know the exact answer to this question. However, I do not see the lag of global warming relative to the increase in atmospheric CO2 during the last fifteen years as such a mysterious effect.

Why? Because the entire system of global heat balance and the chemical thermodynamics of the Earth’s atmosphere is extremely complicated, and multiply intertwined.

It is simple-minded to expect such a natural system (organism?, as in Gaia?) to behave mechanically and linearly. That is to say, it is naïve to expect that because data of climate history show that for a lower range of CO2 concentrations in the past the injection of X amount of CO2 into the atmosphere in any given brief period (a year or less) correlated with a parallel increase of Y amount of average temperature, that such a correlation will obtain at any higher level of CO2 concentration now and in the future.

There are so many possible feedback mechanisms and interconnections of chemistry, physics, and heat flow (chemical thermodynamics) in this earth atmosphere system that it is entirely possible for added heat energy to be stored, without temperature change, for a period of time while CO2 concentration increases above some threshold level, TL, until some higher level, TL + XX, at which point a new concentration-temperature correlation would exhibit itself.

I will give one example. When you heat ice water (but not solid ice, let us say liquid at 0 degrees Celsius) to boiling, there is a steady correlation of heat energy into the water (say in joules of energy per gram of H2O) with resultant water temperature: for every degree Celsius rise of water temperature, an amount of energy equal to 4.184 joules has infused each gram of the mass of liquid water. We know that water boils at a temperature of 100 degrees Celsius (at sea level), so we expect our (initially 0 degree C) water to boil — issue steam — once we have infused it with an amount of energy equal to its mass in grams times 418.4 joules (e.g., 418,400 joules for every kilogram). However, this is not the case.

Boiling is the condition where steam, vaporized water, can form and escape from the liquid mass because the vapor bubbles have sufficient energy to exert a comparable pressure to the liquid water from which they bubble out of, and against the atmosphere in which the heating takes place. (And, since atmospheric pressure is less at higher elevations as on the peak of Mount Blanc, the heat input required for boiling — and the resultant boiling temperature — are less than at sea level.)

A great deal of heat energy must be absorbed by the H2O molecules in liquid water that has just reached 100 degrees C, to agitate those molecules (speed up their kinetic motions) sufficiently so they separate widely (in localized spots) to make the “phase transition” from liquid to gas — steam — and then bubble out. This phase transition happens without an increase in temperature because the added energy is being absorbed into breaking the weak molecule-to-molecule attractive electromagnetic forces that make a liquid, and to agitate the molecular bonds of individual H2O molecules (which one can think of as springs between “billiard ball” atomic nuclei, and those springs are set into rotary and vibratory motions by the heat energy they absorb). The energy required to effect the phase transition of vaporization in water is 2260 joules per gram (this is called the “latent heat of vaporization”).

So, vaporizing our sample of water will require an additional 2260 joules of energy for each gram of liquid water that has just reached 100 degrees C. When we “boil water,” we take the first appearance of bubbling and steam emission as a sure sign that the liquid mass has reached 100 degrees C. Our water sample will be fully vaporized after every gram of the liquid (already at 100 C) has absorbed an additional 2260 joules of heat energy.

If we continue to heat our fully vaporized water mass, which is confined within an expanding balloon so its pressure remains constant (as its volume expands), then the steam will increase in temperature in a nearly proportional manner with respect to heat energy input, though not strictly linear (not exactly proportional).

Thus, a graph of water and/or steam temperature (at fixed pressure) with respect to energy input (per gram) would be a rising curve from ice water (0 C at 0 joules/gram of added heat) to the beginning of boiling (100 C at 418.4 joules/gram), then a flat line at 100 C from 418.4 joules/gram to 2678.4 joules/gram, and then a return to a rising trend of steam temperature with added heat energy. The following is a diagram of this process. (2)

Another representation of the thermodynamic data for water is the diagram of pressure-enthalpy at constant temperature. (3)

Note the line labeled “100 C” in the pressure-enthalpy diagram. You can see the flat part over the range of energy-per-gram during which water undergoes its phase transition from liquid to gas (vapor, dry steam). In this flat region, the mass of water is a mixture of liquid water and water vapor. At the left extreme of the flat line (418.4 J/g at 100 C) the sample is 100% liquid, while at the right extreme (2678.4 J/g at 100 C) it is 100% vapor (dry steam).

To keep water in a purely liquid state (no vapor) at a constant temperature requires a drastic increase of the pressure placed upon it (compression). Conversely, to keep water vapor (dry steam, that is to say without liquid droplets) at a constant temperature requires a drastic reduction of the pressure placed upon it (expansion, no condensation).

Each of the constant temperature lines in the pressure-enthalpy diagram shows a correlation of water pressure versus energy input (heating, energy-per-gram). For temperatures below 374.15 degrees C, there is a range of energy-per-gram in which a mixture of two phases of water — liquid and vapor — can coexist (the two phase “vapor dome”). Above 374.15 C, water exists only as vapor (gas) at any pressure.

Perhaps more than you want to know, but the example of a lag in temperature rise with heat input/content over a range of energy-per-mass in a “simple” single substance (a “pure substance” in thermodynamic parlance) like water should make us cautious about expecting an unvarying trend of any correlation between two variables, like CO2 concentration and global average surface temperature (indicative of tropospheric energy-per-mass), in a system (or substance) as incredibly complicated as the atmosphere (in its natural state, influenced by solar radiation and orbital effects).

Also, it is important to realize that global warming and the earth’s average temperature (particularly of the biosphere) is really an effect of the combined atmosphere-ocean system. The oceans are both chemical and heat sinks (they absorb gases, like CO2, and store heat, which is why polar ice shelves are melting). It is very likely that the energy-per-gram of the ocean-atmosphere system has reached some threshold that has triggered one or more unrecognized thermo-chemical cycles that are now absorbing heat and causing the lag we (i.e., climate scientists) observe between continuing CO2 emissions and global average temperature. Imagine an analogy to the vaporization of liquid water.

What is “fundamentally wrong” with climate models is that there is just too much going on in the natural system (Gaia, for romantics) for all of it to be known, or all the knowns-to-exist to be fully understood and mathematically abstracted and included in the computer simulations of the integrated reality of the atmosphere-ocean (and landmass surface) system. One hopes anomalies between theoretical results and measurements in the field, like those discussed by Hans von Storch (1), will enlighten scientists on the unrecognized phenomena and feedback mechanisms, so these processes can be included into new and improved climate models.

The models will never be “perfect” because the idea of being able to abstract all of nature in its expression as the earth’s biosphere, and simulate it computationally and exactly, is pure illusion. The full extent of natural reality is beyond the bounds of human intellect because human intellect is only a small subset of the full extent of natural reality: “Man is something nature is doing” (Alan Watts). However, the models could be refined to the point of being “good enough” — and probably already are — to guide us in making intelligent decisions about the conduct of globalized human social and economic activities. If and how we will are the real questions challenging us today.

Notes

1. Hans von Storch, Why Is Global Warming Stagnating?, https://www.spiegel.de/international/world/interview-hans-von-storch-on-problems-with-climate-change-models-a-906721.html

Also, previous difficulties in gathering geophysical data of climate history, and initial confusion in processing and analyzing it, could have made it seem that there was a “delay” in temperature rise for continuing CO2 input, until after resolution of such unrecognized errors would allow seeing a clear picture of the actual T-versus-CO2 relationship.

2. Temperature-Enthalpy at Constant Pressure
http://en.citizendium.org/images/8/8b/Steam_Temperature-Enthalpy_Diagram.png

3. Pressure-Enthalpy at Constant Temperature
https://www.ohio.edu/mechanical/thermo/property_tables/H2O/ph_water.html

<><><><><><><>

Originally published at Swans.com on 29 July 2013, as:

Why Is Global Warming Stagnating?
Manuel García, Jr.
http://www.swans.com/library/art19/mgarci68.html

<><><><><><><>

The context behind the argument made in The Latent Heat of Climate Change, Redux is given by the following two articles. The first is an outline of the scientific phenomena producing global warming, and the second describes, in general, how those phenomena are abstracted into computer codes, for the numerical simulation of the dynamics of Earth’s climate system.

Closing The Cycle: Energy and Climate Change
25 January 2014
https://manuelgarciajr.com/2014/01/25/closing-the-cycle-energy-and-climate-change/

Climate and Carbon, Consensus and Contention
18 September 2017, (4 June 2007)
https://manuelgarciajr.com/2017/09/18/climate-and-carbon-consensus-and-contention/

<><><><><><><>

The equivalent of “my book,” explaining global warming and climate change science, would be the totality of articles and blog posts collected here, under the title The Latent Heat of Climate Change, Redux. That collection (“my book”) including:

Energy for Society in Balance with Nature
8 June 2015 (27 February 2012)
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

The Atlantic Overturning Current Is Slowing
12 April 2018
https://manuelgarciajr.com/2018/04/12/the-atlantic-overturning-current-is-slowing/

<><><><><><><>