Endgame For Green Utopia


Endgame For Green Utopia

On these two opposing types of responses to the movie “Planet Of The Humans”

PRO: “The key, however, is that all these [‘greenish’] energy policies have to be carried out after capitalism has been wiped out and under conditions where production is based strictly on use.“

CON: “This documentary is trashy fake news. It’s Trumpian in its disdain for the facts…, they point away from real climate action solutions (such as renewable energy infrastructure) and peddle fascist snake oil of population growth i.e. advocate ecofascist genocide…Meanwhile, those of us who aren’t raving ecofascist lunatics will continue to fight to change society.”

Dreams of Utopias and illusions of self-importance die hard, even in the face of reality. Nature doesn’t care about how we fantasize; it just keeps on with its grand cycles, which those of global heating, environmental destruction and species extinction are now overstimulated by us, homo sapiens. The fundamental question here is: how good of an equitable world society could we energetically have, and by ‘greening it’ can we limit global warming?


The best we could possibly do would be to equalize the standard of living (Human Development Index) worldwide to HDI=0.862 (the range is from 0.28 for the poorest, to 0.97 for the richest nations), with a per capita electrical energy use of u=4000 kWh/c (kilowatt-hours-per-year/capita). The world average by nation (in 2002, and similar now) was: HDI=0.741 at u=2465 kWh/c. The U.S.A. had HDI=0.944 at u=13,456 kWh/c (a rich highly developed country). Niger had HDI=0.281 at u=40kWh/c (a poor underdeveloped country).

The recommended leveling is for nations with u>4000kWh/c to REDUCE energy use (a.k.a economic activity AND militarism), and nations with u<4000kWh/c to INCREASE energy use ENTIRELY APPLIED to raising living conditions (a.k.a. human-centered health and welfare: “socialism”).

This means world socialist government and no wars, and no nationalism.

Examples of enlightened HDI=~0.861 countries (ranked by energy efficiency) are Malta (HDI=0.867), Czech Republic (HDI=0.874), Estonia (HDI=0.853). There is no excuse for a nation to expend more than u=6560kWh/c, because that was Ireland’s usage and it had an HDI=0.946 (and a phenomenal energy efficiency as I calculate it).

All of this is to equalize the experience of whatever is going to happen to humanity because of geophysical changes (“global warming”).

My numbers for the above come from the following linked analysis (using 2002 data).

PART 2a:

From where do we source that energy powering the world-equalized “decent life”? Obviously, we use the fossil fuel and nuclear power infrastructure that we have now to power a maximum effort “full speed ahead” program of developing, building and installing greenish energy technology based on:

– solar (from light-to-heat in water, oil and brine slurry pipes; and also photovoltaics but that is materially limited for the needed exotic elements),

– wind (especially offshore),

– hydro (using existing dams-plus-reservoirs as “pumped storage” facilities, so “excess” solar energy collected during the day pumps water “uphill,” which can then be released “downhill” through the turbo-generators to produce nighttime electricity),

– wave/tidal as possible (without wrecking important inter-tidal bio-zones),

– energy conservation by building/home design (both for insulation, energy capture and greenhousing),

– energy conservation by design of appliances and the mechanical and thermal systems used industrially and for personal living,

– also a necessary transformation of our transportation sector (for bicycles, trolleys, trains, ships even with sails; and bye-bye to most planes, most cars especially big-engined SUVs and trucks, cruise ships, and all that high-waste military gear),

– also necessary is a transformation of agriculture to localized small organic multiculture farms, and away from international-aimed large oil-chemical stimulated monoculture agro-factories/feedlots/plantations.

PART 2b:

As greenish energy sources come on-line, an equivalent generating capacity of fossil and nuclear infrastructure is taken off-line AND SCRAPPED (and materially recycled/reprocessed).

The goal is to always increase the proportion of greenish technology and always decrease the proportion of old energy technology, while keeping the total energy generation such as to provide u=~4000kWh/c worldwide (to maintain HDI>0.862 worldwide).

It will never be possible to eliminate all of the old energy technology and still maintain the decent level of HDI “we” experience and is the moral right of all 7.78B (and growing) of Earth’s people to experience.

Note that fertility rates decrease (they are already negative in some rich countries) as HDI increases; so the rate of population growth will diminish as higher standards of living are widely experienced; with greater physical, heath, child, and economic survival and security, as well as education, provided socialistically worldwide.


Global warming would most likely still continue, but at a slower pace, if given all the above. So the endgame is to equalize the experience of “the geophysical inevitable” (whatever it actually ends up being), while always striving to increase energy efficiency so as to maximize HDI given the energy used.

It seems PHYSICALLY POSSIBLE to have a very high standard of living worldwide (HDI~0.9) with a per capita energy use that is at least 3x less (or, at 1/3 current US-level usage) to 7x less (or, at 1/7 current usage by the most profligate) of ‘rich, energy-wasting nation’ usage.

But global warming (the buildup of greenhouse gases in the atmosphere) may be too far advanced to ever stop by throttling back or even eliminating human (economic) activity; though undoubtedly it could be noticeably slowed by such cutbacks, as has been vividly demonstrated in a very short time by the COVID-19 economic slowdown that has visibly reduced pollution, and afforded greater freedom to wildlife (seen roaming in emptied city streets around the world!).

All of this would mean the ‘best world available’ for ‘everybody’ for as long as it is energetically possible to maintain it. And if human extinction is ultimately unavoidable, then we’ll all go together as brothers and sisters of equal rank.

Now to all who would say that this “all in” paradigm is so psychologically and politically improbable that it will never happen, I say fine, I won’t argue it, but realize that in order to accurately and realistically gage the actual (really potential) value of whatever your scheme or dream for Utopia is, it is essential to know how to calculate what is POSSIBLE within the limits imposed by geophysics (the laws of physics and the workings of Nature) given the natural resources sustainably available from Planet Earth (this is to say without the degradation of its environments and biodiversity).

One small example. Today it is possible to use an ‘app’ on your smart-phone to alert your local coffee shop to prepare your preferred caffeinated concoction, and pay for it electronically over the vast internet-banking computer network (humming and exhausting heat 24/7), then drive to your Java pit-stop and pick up your to-go order, discarding the container after consuming the contents, which container may end up as soiled waxed paper in a municipal organic compost pile, or as plastic in a solid waste landfill, or at worst as litter.

Imagine that modality of coffee consumption is gone in the “all in” world, and instead you have to appear in person at your coffee shop — perhaps on one of your walks into town, or on the walk home from the trolley stop after work — place your order to a human being manning the Java-preparing technology, pay cash (to eliminate all the internet energy-to-heat waste), and drink your coffee from a washable mug you carry or they provide; or, extravagantly, from a paper cup that easily composts. Even more efficiently, you could buy a bag of coffee beans, take them home and grind them with a handcrank grinder, and make delicious coffee at home.

The quality of life is not diminished by simplifying it energetically, or by relaxing its pace. More likely these increase it.

4000kWh/c HDI>0.862 Equalized Green Utopia World:

The 4000kWh/c Equalized Green Utopia World (HDI>0.862) would need 18% more electrical generation than in 2017 (for a world total of 30,189TWh), and applied with 62% greater efficiency for producing social value than we currently do.

In our current World Paradigm, we only get an average of 62% of the potential social value inherent in the world electrical energy generated, and which social value is also very inequitably distributed. The average 38% of annual socially wasted (SW) electrical energy (9,730TWh total at 1,289kWh/c in 2017) goes into all the Social Negativity (SN) of: capitalist-economic, nationalist-political and prejudicial-societal inequities; militarism and wars; and to a lesser degree some technical inefficiencies of electrical generation and of appliances.

The potential (or Primary) energy (PE) contained in the natural resources (all raw fuels and sources) used to generate the World Energy in 2017 was 162,494TWh; and 25,606TWh of electrical energy was generated that year, which was 15.8% of the Primary Energy. That percentage can be taken as a lower bound on the efficiency of our current conversion of raw energy resources into socially applicable energy, because some quantity of fuel (PE, with some refined) is converted by combustion directly to heat, both to drive heat engines and for industrial and personal uses (e.g., smelting, cooking, heating).


For a 4000kWh/c Equalized Green Utopia World “today” we would need 18% MORE usable (electrical and available heat) energy than consumed in 2017, applied with 62% GREATER EFFICIENCY for producing social value than we do currently. Eliminating today’s Social Negativity (SN) would be the energetic equivalent of gaining 38% more energy (in our current paradigm).

But global warming will continue because it is impossible to eliminate all CO2 and greenhouse gases producing processes of energy generation and use. The rate of increase of global warming (the upward trend of temperature) can be reduced as the purely Green (non-CO2 and non-greenhouse gases producing) methods of energy production and use provide a larger portion of the total World Energy production and consumption.

EXCERPTS FROM: World Energy Consumption

According to IEA (in 2012) the goal of limiting warming to 2°C is becoming more difficult and costly with each year that passes. If action is not taken before 2017 [sic!], CO2 emissions would be locked-in by energy infrastructure existing in 2017 [so, now they are]. Fossil fuels are dominant in the global energy mix, supported by subsidies totaling $523B in 2011 (up almost 30% from 2010), which is six times more than subsidies to renewables. So, limiting the global temperature increase to 2 degrees Celsius is now doubtful.

To limit global temperature to a hypothetical 2 degrees Celsius rise would demand a 75% decline in carbon emissions in industrial countries by 2050, if the population is 10 billion in 2050. Across 40 years [from 2010 to 2050], this averages to a 2% decrease every year.

But, since 2011 the emissions from energy production and use have continued rising despite the consensus on the basic Global Warming problem. Hypothetically, according to Robert Engelman of the Worldwatch Institute [in 2009], in order to prevent the collapse of human civilization we would have to stop increasing emissions within a decade [by 2019!] regardless of the economy or population.

Carbon dioxide, methane and other volatile organic compounds are not the only greenhouse gas emissions from energy production and consumption. Large amounts of pollutants such as sulfurous oxides (SOx), nitrous oxides (NOx), and particulate matter (like soot) are produced from the combustion of fossil fuels and biomass. The World Health Organization estimates that 7 million premature deaths are caused each year by air pollution, and biomass combustion is a major contributor to that pollution. In addition to producing air pollution like fossil fuel combustion, most biomass has high CO2 emissions.


Even with the 4000kWh/c HDI>0.862 Equalized Green Utopia World, global warming would continue at a rate faster or slower depending on how low or high, respectively, a proportion of World Energy is generated and used by purely Green methods. To repeat:

All of this would mean the ‘best world available’ for ‘everybody’ for as long as it is energetically possible to maintain it; and if human extinction is ultimately unavoidable, then we’ll all go together as brothers and sisters of equal rank.

The quality of life is not diminished by simplifying it energetically and by relaxing its pace. More likely it would be increased even in today’s paradigm; and most decidedly so with the elimination of Social Negativity in all its forms, which are so wasteful of energy.

Our potential civilizational collapse and subsequent extinction is up to Nature; but whether that occurs sooner or later, and with what level of shared quality of life we experience our species’ remaining lifetime, as well as its degree of equitable uniformity, is entirely up to us.



Can COVID-19 Save Lifeboat Earth?


Can COVID-19 Save Lifeboat Earth?

Harbhajan Singh asks [6 April 2020]: “Could COVID-19 save Lifeboat Earth?”

Many realize that eliminating humanity would make Earth healthier for Nature, plants and animals.

Many also realize that without profound changes to human behavior — by everybody, everywhere; including limiting population growth and ending greenhouse gas emissions — that humanity can not exist in balance with Nature, and both will increasingly suffer, eventually — in a few lifetimes? — fatally.

It is well documented that as human encroachment and destruction of Nature (e.g., environments and biodiversity) advances, that habitability decreases.

That decrease is due to a combination of:

— pollution (bad air, ocean plastic, dead seas, lost topsoil, lost forests, toxic land);

— climate change (and more violent weather, floods, droughts, wildfires);

— food source degradation (inorganic industrial farming, loss of natural varietals, loss of seafood), and

— greater hazards of releasing viruses (epidemics and pandemics) fatal to people.

The scientific reports get very specific on ‘this particular negative effect has this particular [human stupidity] cause’, but in aggregate they show what I’ve just outlined.

More people are realizing that humanity’s accelerating encroachment and destruction of Nature can only cause more deadly virus pandemics to plague us. Hotter environmental temperatures from global warming, and greater particulate and noxious gases pollution from human activity (industrialization, capitalism, militarism) aggravate the severity and lethality of all respiratory illnesses, like COVID-19.

I prefer that humanity became vastly more intelligent, and cooperative, and altruistic, and balances its existence (both individual and collective) with Nature’s timeless rhythms and geophysical limits.

The most important aspect of that wished-for cooperativeness is that we cease viewing each other as deadly rivals in a grim zero-sum game of making-money one-upmanship and competing narcissistic schemes of enslaving others.

Miraculously, the Earth is the most wonderful Paradise we know of in the entire Universe. If we treated it as such, instead of treating it like a garbage dump and sewer, it would return that appreciation, and we would knowingly experience life in this actual Paradise, for ourselves and for endless future generations.

This is not just poetry, it is fact.


Climate Change and Voting 2020


Climate Change and Voting 2020

Today, humanity faces a situation unique in the 200,000 year existence of our species Homo sapiens sapiens, and unique in the 2 million year existence of our genus, Homo: the unprecedented steady linear advance of global warming since 1970, which is making our planet irreversibly less habitable as time progresses, and which is driven entirely by the emission of greenhouse gases as waste products of human activity, particularly the extraction and combustion of fossil fuels. If this human-caused global warming remains unchecked it could ultimately lead to our extinction.

Global warming is intimately coupled with population growth (see Note). The universal desire for a better life leads people everywhere to try to acquire and use more energy to reduce the drudgery of daily survival, and beyond that to increase their security, comfort and enjoyment. Food is the source of our internal energy, that which powers our metabolism. The most popular source of our external energy today is fossil fuels: the burning of refined petroleum fuels, natural gas, and coal. From these we derive most of the heat and electricity we generate and use both industrially and personally, as well as for propelling our transportation. It is the increasing energy demand per person of a growing world population that drives the unprecedented rate of global warming we are experiencing.

Motivating people everywhere to see global warming as the fundamental cause of their local disasters of severe weather, drought, failed agriculture and fishing, habitat loss and resource scarcity wars, and then motivating them to cooperate internationally to immediately reduce the rate of global warming as much as geophysical conditions will allow, is the singular political problem of our time for our species.

The trends of population (in billions) and global warming (in degrees °C increase relative to the average global temperature during 1880-1920, the datum) are given in the table shown. The quantities listed up to the years 2019-2020 are based on data. The populations listed after 2019 are extrapolations based on an assumed linear population increase of +87.5 million per year (M/y), which was the average rate of increase from the years 2011 to 2019. The temperature increase above datum (delta-T) for years after 2020 are linear extrapolations based on the temperature ramp observed between years 1970 and 2020 (a +1.4°C increase over 50 years).

What is not yet known is if and when global warming will accelerate beyond the linear trend assumed after the year 2020, in the table. Such acceleration would be caused by the appearance of new physical conditions such as:

the transition of tropical forests from being carbon absorbers and sinks to becoming carbon emitters because of their severe degradation brought about by logging, drought and wildfires;

a massive methane release from the thawing Arctic;

sudden and massive glacial calving and melt in Greenland and Antarctica baring more ground for the absorption of solar radiation and the release of formerly trapped methane and carbon dioxide;

methane released from warmed oceans because of the breakdown by heat of methane clathrates (solid methane hydrate “ices” formed under cold high pressure at ocean depths).

Because of the unprecedented pace of our current global warming, we do not have the luxury of unlimited time — as was true in prior millennia — to physically evolve adaptively or escape by migration in response to climate change. (Migrate to where?, a billionaire’s habitat bubble on Mars? We already have a worldwide climate change and environmental collapse refugee crisis, and it will only get worse without a civilization-transforming response to climate change.)

To slow global warming to the minimum rate now limited by geophysics (the carbon load of the atmosphere) will require a species-wide change of human behavior as regards how energy is generated, conserved and used; how we steward the environment; and how the growth of human population is to be limited and people cared for everywhere. It takes Nature 200,000 years to clear a massive excess of carbon dioxide in the atmosphere (such as we have injected over the previous century), and this occurs through a sequence of increasingly longer term processes: CO2 uptake by the oceans (years to decades), dissolution of seafloor sediments (the dissolving of chalk acidifying the oceans over decades to centuries), the weathering of carbonate rocks (centuries to millennia), and silicate weathering (tens to hundreds of millennia). CO2 uptake by photosynthesis is blunted by the ‘torrential rain-flooding plant-growth punctuated drought-wildfire’ cycle.

We can only attenuate global warming by species-wide willpower, and the sooner we develop and apply that willpower the greater will be the degree of that attenuation, and the further the likelihood of our causing our own extinction.

Without an internationally coordinated climate change response effort within the next dozen years that is 70% larger than the combined war efforts of World War II (to account for the +5.5B population increase between 1939 and 2020), global warming will reach and then exceed 2°C above the 1880-1920 datum. Warming beyond that point will likely be impossible to counteract by any human actions, and the climatic and weather-disaster consequences will be dire and unrelenting.

We have lost the luxury of unlimited time to dawdle in our many egocentric obsessions and illusions — waiting for the ideologically “perfect” revolution; seeking the most ethnically pure nationalism; the ideal theocracy; the maximization of our wealth; the complete destruction and disappearance of those “other types” of people whose savings, lands, resources and lives we want to steal; mindless absorption in superficial consumerism and ‘electronic comic book video game TV internet social media entertainment’ — before collectively reforming ourselves into better futures. Nature has made our old awareness-blunting time-wasting games obsolete by becoming feverish over its infection from our greenhouse gas toxicity. Our last chance for civilizational transformation that can alter the course of climate change is now, this next decade.

Clearly, the single best strategy to slow global warming is to replace fossil fuel energy with solar and “green” energy, whose production and use does not emit CO2, CH4 (methane), and other organic greenhouse gases and vapors.

Everything I have described up to this point has been said before by many people in many ways over many years. Now, about voting.

The only way we can achieve the civilizational transformation required to have any ameliorating effect on the course of global warming, and tackle the singular political problem of our time for our species, is to wrest control of governments from oligarchic, neoliberal, capitalism-obsessed, theocratic, nativist, and climate change ignoring elites — especially in countries having disproportionate political-economic-military power, expelling disproportionate quantities of greenhouse gases, and causing disproportionate environmental destruction — and then establishing regimes committed to real and immediate climate change response. Such real climate change response naturally subsumes all narrowly defined issues of economic equity and social justice.

In countries that offer some degree of democracy to their people, it is necessary to vote for politicians — now — whose prior history indicates they would be most reliable at vigorously pursuing a maximal climate change response, locally, nationally and internationally. For U.S. voters in 2020 that means electing Bernie Sanders to lead the Democratic Party ticket for the presidency, and then voting to ensure he wins the November general election. It is also necessary to elect people who would be Congressional representatives and Senators allied with Bernie Sanders. It does not matter whether sweeping the Sanders socialist-populist groundswell youth-quake “revolution” into power fits in with your ideal of an American government regime, however intellectually refined, or crudely simplistic, or myopically and corruptly partisan, or vainly and egocentrically identity political your ideal regime would be. We no longer have time to put off making partial gains in the direction of our goal, in order to wait for anyone’s variety of personally tailored political perfection.

The burden of responsibility on the citizens of the politically powerful, economically rich, profligate greenhouse gas emitting countries is to agitate and vote for, and vigorously implement, the real type of climate change response that is being described here. The burden of responsibility on the older citizens and older non-citizens is to put their time, money and energy into creating and protecting a good world with a decent future for the young. That has always been the responsibility on adults, and in our time — now — that responsibility must be discharged by implementing a real climate change response which is intrinsically a revolution of: economic equity, social justice, energy conservation and efficiency, rapid transition of energy sources and infrastructure from fossil fuels to green energy, and demilitarization.

In countries whose governing elites do not offer the people an effective political voice, it is necessary that those people find ways to change the nature of their governments. Risky, I know, but essential in order to respond to the looming threats of climate change.

I know that everybody can easily rationalize continuing to drift along with the mindsets they have now. But that will only keep us as distracted, delusional and disunited as we are now, and convey us all haplessly into the implacable civilization-chewing grinder of runaway climate change. We do not have the luxury of preferences anymore if we are to prevent the worst, especially for our children and grandchildren.

As I write this during a warm rainless mid-February spring in Northern California, with whitish pink-tinged apple, cherry and plum blossoms; magnolias flowering; purple florets of vinca; yellow tufts of eucalyptus; small purplish rosy globular flowers of polygonum, light blue florets of rosemary, bright orange California poppies, yellow flowers of oxalis and daffodils; and many other varieties of flowers blooming two months early, I wonder if the dry season October wildfires will now flare up in August, or even July. There has been no rain this February, “normally” the wettest month of the year for California; it appears we are entering a new drought.

And I wonder if the slow, tentative awakening in the public mind to the reality of increasingly inhospitable climate change, which awakening I observed during the course of 2017, 2018 and 2019, will accelerate and coalesce into the national and world “cosmic consciousness” that I know is essential if we Homo sapiens sapiens are to have any chance of actually protecting ourselves (all of us everywhere), within the next decade, from the worst possibilities of runaway climate change.


The purpose of social welfare societies — socialism — is to provide their individuals with sufficient quantities of water, food, shelter and energy to carry on fulfilling lives, without subjecting those individuals to lonely struggles for precarious survival. This is why mortality rates are lowest in highly socialized prosperous societies, and why the consensus of individuals living in them is for low rates of reproduction, even to the point of birth rates below 2.1 per woman, the replacement rate necessary to maintain the existing size of a society’s population.

Clearly, the single best strategy to slow, and perhaps even reverse global population growth, is to provide a global system of reliable socialized security to completely support individual healthcare for life, obviously including: maternity care; safe birthing; safe abortion; child survival, healthcare, education and launching into “independent” living; elder care; and humane natural and self-willed dying. There is simply less incentive to have more children if more of them are guaranteed to survive and experience full and decent lives, and if the individual has a socially guaranteed protection of their own survival.

The above Note is from:

Oil, Population, Temperature, What Causes What?
9 June 2019


Manuel García, Jr.’s Worldview, 2020


Manuel García, Jr.’s Worldview, 2020

I am just over one-eighth of a billionth of humanity, and I think that the impact and value of my thoughts and ideas are about as significant. This year, 2020, I will be 70 years old, and I think that I have probably said everything original that I was capable of saying. I am sure that I will write more of my little essays, and put them out there, but they are more than likely to be repetitions and rehashes of what I have previously written. Right now I cannot imagine squeezing any new insights out of all the reading and studying (and living) I have done in physics, science, history, psychology, Buddhism, and literary fiction.

So, I have compiled a list of 20 of my essays (of recent years), which as a group I offer as representative of my “worldview,” as of 20 January 2020. I post that list here, “for the record,” and for the ‘benefit’ of people new to my web-pages. All of this represents my annual (in January) “state of the world” message.

I have no ego regarding my Internet publications; if they are useful and encouraging to you then great, if not then I think at least they have done no harm.

My plans are to continue absorbing things that interest me, learning as I can, and expressing myself as feels right and enjoyable. I am satisfied that at the very minimum I have improved just over one-eighth of a billionth of humanity.


Eight Categories, and Numbers of Articles in Each:



Article titles are within their respective web-links






























Linking Energy Use And Human Development

This is a re-posting of my report An Introduction Linking Energy Use And Human Development, from 28 April 2006 — unchanged. This is another of my personal favorites. A PDF copy of the report is available through the web-link given below.

An Introduction Linking Energy Use And Human Development
28 April 2006




Of related interest and more recent:

Energy for Human Development
9 November 2011

Energy for Society in Balance with Nature
8 June 2015 (27 February 2012)

Our Globally Warming Civilization
2 June 2019

Oil, Population, Temperature, What Causes What?
9 June 2019


Oil, Population, Temperature, What Causes What?


Oil, Population, Temperature, What Causes What?

In statistics, correlation is not proof of causation. Causation between coincidences has to be established by deeper investigation. Three trends that are tightly coincident, between the years 1960 to 2025, are: the increase in global population above its 1953 total of 2.7 billion (2.7B), the accumulated petroleum production since 1900 (in giga-barrels, Gb), and the increase in average global temperature, T, above a baseline of 14.7 degrees Centigrade (T – 14.7C).

No one, except lying hypocritical ideologues, denies that causal links exist between these three trends, but what are they? Let’s explore the possibilities.

P1: Increases in oil production could cause increasing population and global warming.

P2: Increases in population could cause more oil production and global warming.

P3: Increases in global warming could cause increases in population and more oil production.

Possible causal links in P1 are: fossil fuel energy made available through continuing oil production could support human reproductive activity and the increase of existing families, and it could support and expand existing industrial activity that emits carbon dioxide (CO2) and methane (CH4) gases.

Possible causal links in P2 are: the genetically programmed impulse to gather all resources possible in order to reproduce as much as possible could cause the continuation of oil production to garner fossil fuel energy, and it could cause global warming by expanding the mass of CO2 exhaling human life.

Possible causal links in P3 are: the increase in the temperature of the biosphere could cause continuing and expanded human reproductive activity, and the continuing production of oil.

Because the biosphere is not heating up independently of human activity, we can dismiss P3. This dismissal would only be argued against by lying hypocritical ideologues, who are irrelevant to the good of humanity and Planet Earth, so we ignore them and move on.

We are left then with oil production (P1) and population growth (P2) as fundamental drivers of global warming. Still to determine is whether oil production fuels population growth, or population growth spurs oil production, and we can suspect that they amplify each other.

Homo sapiens are one species of life on Planet Earth, and they are also one variety of primates. Since the inception of the species over 2,000 centuries ago, a sole human being without any other support has had little chance of survival, and this was also true of humanity’s precursor primate species.

All living creatures have an instinct to survive, and the strongest outlets for that instinct are: finding food and water, securing shelter and defending territory, and reproducing. Territory is defended because it offers food and water gathering and reproductive opportunities. One strategy for individual survival is to associate in groups that cooperate for mutual survival: families, packs, herds, monkey troops, clans, and human societies. Racism among humans is a degeneration of this survival strategy.

Family is the most reliable — and most genetically linked — association an individual can form to support their survival. This is why the urge to reproduce is innate, and that is why Life on Earth continues.

A larger family provides the individual with more loyal associates for water and food gathering, for defense against predators, and for protection and care when aged and ill. For individual humans, this primitive survival strategy becomes more important the less they have social welfare networks and social welfare societies to rely on.

The purpose of social welfare societies — socialism — is to provide its individuals with sufficient quantities of water, food, shelter and energy to carry on fulfilling lives, without subjecting those individuals to lonely struggles for precarious survival. This is why mortality rates are lowest in highly socialized prosperous societies, and why the consensus of individuals living in them is for low rates of reproduction, even to the point of birth rates below 2.1 per woman, the replacement rate necessary to maintain the existing size of a society’s population. It is entirely logical for individuals living without reliable socialized guarantees of getting sufficient access to water, food, shelter and energy to conduct safe and decent lives, to procreate larger families. This is why population growth is greatest among the poorer people on Earth, whether in the Industrialized Societies, the Developing World, or the impoverished Third World.

Clearly, the single best strategy to slow, and perhaps even reverse global population growth, is to provide a global system of reliable socialized security to completely support individual healthcare for life, obviously including: maternity care; safe birthing; safe abortion; child survival, healthcare, education and launching into “independent” living; elder care; and humane natural and self-willed dying. There is simply less incentive to have more children if more of them are guaranteed to survive and experience full and decent lives, and if the individual has a socially guaranteed protection of their own survival.

So, failure to provide reliable socialized protection for individual survival amplifies the innate urge to procreate, which then fuels a population explosion, whose consequence is continued global warming: because of a continuing and expanded use of fossil fuel energy that is very inequitably controlled and shared out; and because of a larger mass of humanity exhaling carbon dioxide gas (CO2), creating organic wastes that emit methane (CH4), and then these two entering geophysical positive feedback loops that amplify such subsequent emissions.

However, the population explosion alone — which is concentrated among Earth’s darker and poorer people — is not the sole cause of global warming. The continuing and expanded drive by individuals to acquire fossil fuel energy in order to accumulate more personal wealth, more personal power, more social status, and more ego gratification, is the other — and I think predominant — fundamental cause of global warming. As already noted, the control and exploitation of fossil fuel energy is very inequitably shared. Rich and politically powerful countries and individuals have overwhelming control over fossil fuel energy resources, and they are in the best positions to exploit those resources for their own aggrandizement. This is pure capitalism. Those of our fellow homo sapiens primates who are “left out” of wealth society’s fossil-fueled economic positive feedback loop will apply “monkey see, monkey do” in attempted emulation of that fossil-fueled economic growth strategy. This is why there is contention, exploitation and war within poor societies and impoverished populations. The desperate eat each other to claw to the top of their heaps.

So, the production and use of petroleum is driven by the will for selfish gain by rich and poor alike — the rich having much greater advantages in doing so — and by the legitimate needs of individuals and their societies to acquire sufficient energy to sustain their survival and that of their children in safe and decent lives. As population grows so does the need for greater amounts of energy: energy for human development, (1), (2).

Clearly, the single best strategy to slow, and maybe even someday reverse global warming, is to replace fossil fuel energy with solar and “green” energy, whose production and use does not emit CO2, CH4, and other organic “greenhouse” vapors.

While access to greater amounts of heat and electrical energy — whether from green or from fossil fuel sources — can make it easier to accommodate increased human fertility, the presence of reliable, global, equitable socialized protections of individual and family survival, health and well-being will act to limit (and ultimately decrease) population growth, and as a consequence throttle the need for an ever expanding grasp for energy.

So, the entwined trends of a population explosion concentrated among the “have nots,” with a highly inequitable expansion and use of energy — primarily from fossil fuels — controlled by the “haves,” combines to form our current world crisis of: global warming; environmental degradation; biodiversity, habitat and survivability losses; and inequitably distributed socio-economic decay. The cure for this world illness is the combination of a conversion from fossil fuel energy to green energy, along with the establishment of a global system of socialized security for individual and family survival, health and welfare.

The continuation of our globally feverish illness is simply a reflection of the continuation of selfishness and egotism applied on top of the genetically implanted instinct for survival, in our highly inequitable human societies and human civilization. The great barrier to curing this illness is overcoming the resistance to relinquishing the grasping for primitive personal advantage by the weakening and exploitation of others; and replacing it with: individual commitments to ethical living; mutual trust among all people; and economic leveling and universal human welfare as matters of government policy.

The combination of the last three would help to form a world solidarity that is in balance with Nature. This would be a consciously willed evolutionary advance of our species, a victory of frontal lobe cognition over limbic system reactivity. The unwillingness and “inability” to form such a green, world solidarity would be acquiescence to a near-distant, unnatural and unnecessary human extinction.

The cure is as immensely impractical and as trivially easy as all of us homo sapiens simply choosing to consciously change our ways, with trust in each other for fair dealing and mutual protection. Call it green socialism if you like.


1. Energy For Human Development,

2. Energy For Society In Balance With Nature


Our Globally Warming Civilization


Our Globally Warming Civilization

The 150 years of the Industrial Revolution (~1770-1920), with its catastrophic and bloody termination in World War I (1914-1918), had no noticeable effect on the global average temperature, which had hovered around 14.7 degrees Centigrade (C) since antiquity. The human population had taken 200,000 years (more or less) to grow to one billion (1B), in 1804, within the natural and majestic evolution of global climates during those 2000 centuries, (1).

By 1927, the human population had increased to 2B. The 1920s were economic boom years in the Industrialized World (give or take some post WWI German misery, the Russian Revolution, and Chinese civil warfare) with the liquid petroleum replacing the solid coal as the fossil fuel of choice for transportation vehicles; and the explosion in the craving for, and manufacture and use of, internal combustion engines and the automobiles powered by them.

After 1927 the rate of population growth increased from what it had been on average during the previous 123 years (about 8 million per year, ~8M/yr) to an average rate of 29M/yr, to accumulate another 0.7B people in the 26 years up to 1953, when the population was 2.7B. Those 26 years between 1927 and 1953 spanned the crescendo of the Roaring ‘20s, the capitalist economic collapse of 1929, the Great Depression (1929-1942), World War II (1939-1945), the Second Sino-Japanese War (1937-1945), and the Chinese Communist Revolution and Civil War (1946-1949).

I estimate that the cumulative amount of petroleum produced (pumped out and used up) by 1953 was 98.6 billion barrels (98.6 giga-barrels, 98.6Gb), (2). This implies that since about 1900, when civilization’s use of petroleum as a fuel began in earnest, it consumed 602 giga-GJ (602 x 10^18 Joules) of energy (equivalent to 168 mega-GWh = 168 x 10^9 MWh = 168 giga-mega-watt-hours) to power itself up to 1953, (3).

By 1960, the world’s human population had reached 3B, and the rate of population growth was accelerating (having been about 43M/year during the previous 7 years). From 1960 to the present day, the trend of cumulative production of petroleum, Q, has been proportional to the rising trend of human population, in the ratio of 272 barrels of oil per person (272 b/p).

Specifically, my approximating formula for Q, the accumulated production of oil in giga-barrels (Q, in Gb), given as a function of the population in billions (P, in B) for a given year within the interval 1960 to 2025 is:

Q(year) = [P(year) – 2.7B] x (272 b/p).

This approximation gives an accumulated production up to 2015 (with population 7.35B) of

Q(2015) = 1265Gb, (approximation).

By integrating the actual production rate-per-year curve (the “Hubbert curve” for world production, in GB/yr) given by Laherrere (2), I find the actual accumulated production up to 2015 to be:

Q(2015) = 1258Gb, (actual).

The rate of oil production is now likely at its peak of between 25 Gb/yr to 35 Gb/yr during this 20 year interval between 2005 and 2025, (2),(4). Thereafter, it should drop rapidly since current oil fields have diminishing production, there have been no major oil field discoveries since the 1970s and the frequency of discovery has steadily diminished since then. That means that over half of Earth’s original total reserves, estimated at 2,200Gb (2), have already been extracted. The “end-of-oil” seems destined for the last two decades of the 21st century.

Assuming all that oil was burned, up to the year 2015 (115 years since 1900), civilization would have used 7,674GGJ, (7,674 x 10^18 Joules), equivalent to 2,139GMWh, (2,139 x 10^15 Watt-hours) of energy, derived from that 1258Gb of petroleum, to power itself.

That burning would have released 398,786Gkg (~4 x 10^14 kg = ~400 giga tonnes) of CO2, (5). At present (May 2019) there are about 3,250 giga tonnes of CO2 in the atmosphere, with an average concentration of 415 parts per million by volume (415ppmv), (6). 1228 G tonnes of that CO2 is excess above the pre-industrial amount in the atmosphere. The ~400 G tonnes estimated here as the accumulated emissions from the prior burning of petroleum (up to about 2015) is only about one-third of the excess atmospheric CO2.

There are numerous other processes in our civilization, as well as in the natural world, that cause the emission of carbon-dioxide and its atmospheric retention in excess amounts. The main sources of CO2 emissions are the exhalations from aerobic respiration by all of Earth’s living heterotrophs, decaying plants, and volcanic eruptions. Other sources include: the burning of coal and natural gas, forest and vegetation fires caused naturally and by slash-and-burn agriculture, the bubbling out of CO2 from warming oceans no longer able to dissolve as much of that gas as before, and the massive amount of past and continuing forest clearing that has reduced Earth’s natural system of CO2 uptake — photosynthesis. The cement industry is one of the two largest producers of anthropogenic carbon dioxide, creating up to 5% of worldwide man-made emissions of this gas, of which 50% is from the chemical process and 40% from burning fuel, (7).

Methane (CH4) is a very potent greenhouse gas, being 30 times more effective than CO2 at trapping heat. “For each degree that Earth’s temperature rises, the amount of methane entering the atmosphere from microorganisms dwelling in lake sediment and freshwater wetlands — the primary sources of the gas — will increase several times. As temperatures rise, the relative increase of methane emissions will outpace that of carbon dioxide from these sources.” (8) Other sources of methane emissions are: rotting organic wastes, termite colonies, and bovine flatulence from industrialized agricultural sites. The globally warmed thawing Arctic tundra is now a region of major methane eruptions.

Up until 1974, when the human population had reached 4B, Earth’s climate system had yet to become feverish over the previous 200,000 years of collective human activity. However, at about that time the average global temperature began increasing at a historically unprecedented rate because of civilization’s heated and organic outgassing, a process which continues today as anthropogenic global warming, (9).

In fact, the date at which collective human activity began to affect and alter Earth’s climate system has now been pinpointed to somewhere between October to December 1965. That date marks the end of the Holocene Epoch of geologic history (which began 11,700 years previously, after the last Ice Age), and the beginning of the Anthropocene Epoch — the epoch of human-affected climate, globally. The physical phenomenon marking this transition is that Carbon-14, a radioactive isotope released during open-air atomic and nuclear bomb explosions between 1945 and 1963, had finally dispersed uniformly around the globe, and become absorbed into tree tissues even in the remotest parts of the world, thus recording that uniformity (10).

Between 1960 and 2025, the three rising trends of: population (P), cumulative oil production (Q), and increase of average global temperature above baseline (T – 14.7C = delta-T), are all uniformly proportional to one another.

Specifically (for years between 1960 and 2025) T, P and Q are related to each other as follows:

[T(year) – 14.7C] = [P(year) – 2.7B]/3.3B = [Q(year)/(900 Gb)],

where the forms above are each equivalent to a temperature difference relative to the baseline of 14.7C (delta-T, in degrees C).

Notice that if T = 15.7C, and P = 6B, and Q = 900 Gb, then the equality above holds, with: 1 = 1 = 1. This particular condition actually occurred during 1999.

During this 65 year interval, a 1 degree C rise in temperature (above 14.7C) is coincident with a 3.3B increase in population (above its 1953 level of 2.7B), which in turn is coincident with a production (and use) of 900Gb of petroleum.

The population is growing from 3B in 1960 to an expected 8B in 2028 during this 68 year interval, with an average population increase of +73.5M/yr. Within these 68 years, and especially during the 55 years from 1970 to 2025, the rising trends of (T – 14.7C), (P – 2.7B)/3.3B, and Q/(900Gb) are in lockstep. This period — with explosive population growth, depletion of over half of the Earth’s petroleum endowment, and with an unprecedented rate of global warming — began in the last year of the Eisenhower Administration, 1960, when John Kennedy was elected US President, and extends right up to the present (and beyond it).

The average global temperature will have climbed up from ~15C to ~16.2C during this interval, a relative rise of 1.4C, and a rise of ~1.5C (delta-T = ~1.5C) above the pre-industrial temperature, defined here as 14.7C (58.46 degrees Fahrenheit). That 1.5C (2.7F) warming above the pre-industrial temperature represents a tremendous amount of heat energy diffused throughout the biosphere, and the deleterious effects of that excess heat are self-evident to all: the altering of climate; the powering of violent weather; the heating and acidifying (with absorbed CO2) of the oceans, sterilizing them of marine life; the melting of glaciers and thawing of tundras; the causing of carbon dioxide and methane to bubble out of solution and frozen capture in the natural world (in a vicious feedback loop); the expansion of disease pathogens and tropical parasites; and the added stresses to both wild and farmed vegetation, and increased desertification, which result in human hunger and desperate migrations of impoverished refugees.

Now, our civilization is starting to suffocate in the lingering heat of its previous exhalations. The singular challenge to our species and to our political economies is what to do, collectively, about global warming. That challenge remains largely unanswered, and tragically denied by too many people .


1. World population is estimated to have reached one billion for the first time in 1804. It was another 123 years before it reached two billion in 1927, but it took only 33 years to reach three billion in 1960. The global population reached four billion in 1974 (14 years later), five billion in 1987 (13 years later), six billion in 1999 (12 years later), and seven billion in October 2011 (12 years later), according to the United Nations, or in March 2012 (13 years later), according to the United States Census Bureau.

World population by year

2. Jean Laherrere, World Crude Oil Production, (brown line), April 2015

3. The energy released from combusting 1 barrel of oil is 6.1 giga-joules (6.1 GJ), which equals 1.7 MWh (1.7 mega-watt-hour).

4. Worldwide, around 92.6 million barrels of oil were produced daily in 2017.
~73 million barrels/day in 1998, rising since.
73 Mb/day = 26.7 Gb/yr (1998)
93 Mb/day = 34.0 Gb/yr (2017)
During 20 years of production (1998-2017) the rate rose 20 Mb/day = +1 MB/day/year

5. Burning one barrel of petroleum can produce between 317kg (realistically) to 433kg (theoretically) of CO2:
Therefore, the CO2 emitted by combusting 1b = 317kg CO2.

6. As of January 2007, the earth’s atmospheric CO2 concentration is about 0.0383% by volume (383 ppmv) or 0.0582% by weight. This represents about 2.996×10^12 tonnes (1 tonne = 1000kg), and is estimated to be 105 ppm (37.77%) above the pre-industrial average (~278 ppmv).

415 ppmv of atmospheric CO2, as of May 2019

(415/383) x 3000 G tonnes = 3,250 G tonnes, (May 2019).

7. Environmental impact of concrete

8. Methane is roughly 30 times more potent than CO2 as a heat-trapping gas

9. I first constructed the simplified plot of average global temperature in 2004, using data from public sources. Details about that construction and the data used are given at:
Population, Oil and Global Warming, 31 May 2019 (15 March 2004)

10. The Anthropocene Epoch began sometime between October and December 1965.


Population, Oil and Global Warming

Our ignorance is not so vast as our failure to use what we know.
—M. King Hubbert (1903-1989)


This article is identical to:

Oil, Population And Global Warming
15 March 2004

The only change is the addition of the graphs (below), which I made today (30 May 2019).

Numbers beyond the year 2020 are speculative (by the sources cited). Numbers for oil used to date (globally) are less certain than the numbers for population and average global temperature. The temperature history has been simplified (you can find very detailed data if you wish). Oil extraction by fracking since ~2000 (and since this article was originally published, in 2004), has drastically changed the numbers for oil production in the United States.


Future historians will look back on the 200 years of the 20th and 21st centuries as the Oil Period in world history. During this time, the latent heat of buried petroleum will have been mined and released into a dramatically warmed and crowded planetary surface. In the century from 1950 to 2050, the world will have shifted from one with 2.7 billion people, 96% of its petroleum reserves intact, and insignificant global warming, to one with perhaps over 9 billion people, less than 10% of its petroleum reserves left and a 2 °C average global temperature rise. For perspective, during the last Ice Age — about 16,000 years ago — the average global temperature was 4 °C (7 °F) below the 1860 to 1920 average of 14.7 °C (58.5 °F).

What will be the politics of a hot, crowded world without oil, and possibly on the brink of abrupt climate change?


Within the sixty years from 1970 to 2030, we will have used up about 80% of the world’s oil, the peak rate of production occurring now, during these few years about the turn from 20th to 21st century. Half of the world’s oil endowment has already been used. Efforts at conservation and improved extraction technology may extend till the years 2007 to 2013 when the oil production rate will peak (at about 26 billion barrels/year, or 70 million barrels/day). Inevitably, beyond this time the rate of oil extraction will diminish.

The bell-shaped curve of oil production rate variation over time is called the Hubbert Peak, in honor of the late geophysicist who — in 1949 — first predicted the brevity of the fossil fuel era. Hubbert’s 1956 prediction that US oil production would peak in 1970 and then decline was scoffed at, but he was proven exactly correct. (1), (2)

Today [15 March 2004], over 87% of the oil endowment in the continental U.S., and over 95% of that in Alaska have been consumed. America uses 28% of the world’s yearly oil production, producing 12% domestically, and importing the remaining 16%. Americans consume oil at six times the rate of the world average (25 versus 4 barrels/person/year). America imports oil to supply 29% of the energy it consumes, domestic oil supplying another 12%, so that 41% of our energy comes from oil. This fact is fundamental to national planning. (3), (4)

Oil used (accumulated giga-barrels, GB) by a given year (estimated)


World population increased at an accelerating rate until 1990 (when 85 million people joined us), and has continued increasing at a diminishing pace since. The world family was 2 billion people in 1930, 3 billion in 1959, 4 billion in 1974, 5 billion in 1987, and 6 billion in 1999. Estimates published by the US Census Bureau show a potential world population of 7 billion by 2013, 8 billion by 2028, and 9 billion by 2048. The future US population is estimated to be 4.5% of the world total, as it is today. (5)

World population (billions, B) vs. year


Instrumental records of global surface temperature begin in 1860. The average global surface temperature for the period between 1961 and 1990 was 15 °C (59 °F). The deviations of global surface temperature, relative to the reference temperature of 15 °C, are — very generally! — as follows: -0.4 °C prior to 1920, a rise to 0 °C by 1940 (being at 15 °C), a plateau at +0.1 °C during 1940-1945, a lower plateau at -0.05 °C during 1945-1975, a rise to +0.6 °C by 2000. The actual year-to-year variations within each of these five periods are within a swing of 0.2 °C either way. (6), (7)

The temperature rise after 1975 is unprecedented (averaging +0.03 °C/year). The temperature today is 1°C (1.8 °F) warmer than in the late 19th century. The initial 40% of this temperature rise took 55 years, while the final 60% only required 25 years.

It is interesting to view the finely-detailed temperature history presented by the United Nations Environment Programme, and to imagine the warming trend beginning in 1920 as reflective of the oil boom then underway, as the industrialized nations moved from coal to petroleum for their energy; and to the warmth during WWII, which was not equaled until the 1980s.

Predictions of global warming above the early 20th century temperature of 14.7 °C are +2.3 °C in 2050 (between +1.5 °C and +3 °C), and +3.3 °C in 2100 (between +2.1 °C and +6.5 °C). (8)

Average global temperature (degrees Centigrade, C) vs. year (simplified)

Is it possible to directly relate temperature rise with human activity? For example, linking fossil energy, greenhouse gases, and global warming? What about fossil energy, industrialized agriculture, energy-intensive social systems and human population? Finding causal links to global warming is a scientific problem of great complexity, and one that has engaged many scientists for at least two decades. (9), (10)

However, without appealing to causal arguments, it is sometimes possible to show that trends for two phenomena coincide. If so, some limited insight might be found by contemplating this.

Proportionality, people and oil

The growth of human population, the depletion of oil resources and the rise of global temperature each mirror one another to a remarkable degree, a result that can be arrived at from the data and projections already described.

The world population of 2.7 billion by 1953 can be taken as a base that required negligible petroleum energy to produce. The addition of people beyond this level is fueled at a rate of 264 barrels of oil per person.

So, population minus the base equals cumulative oil production in barrels divided by 264 (equation 1).

For example, today’s population of 6 billion required the expenditure of 871 Gb (Gb is for Giga-barrel, or 1 billion barrels); the actual consumption by January 1999 was 857 Gb. Similarly, a projected population in 2050 of 9 billion would coincide with an accumulated depletion of 1,663 Gb, or 95% of the estimated 1,750 Gb of the world’s oil endowment.

The actual population and cumulative oil production data between 1950 and 2000 correlate startlingly well with the proportionality and offset (base population) given here. The projections to 2050 also correlate extremely well, but of necessity they contain uncertainties only time can clarify.

Proportionality, people and temperature

By direct comparison, the trends of temperature rise above 14.7 °C (the pre-1920 plateau) and population growth mirror each other after 1975 with a proportionality of 3.3 billion people per °C.

So, the difference of population minus base, divided by 3.3 billion equals the temperature difference above 14.7 °C (equation 2).

For example, the 6 billion people of today coincide with a rise of 1 °C to 15.7 °C (60.3 °F), and the projected 9 billion people of 2050 would coincide with a rise of 1.9 °C to 16.6 °C (61.9 °F).

Proportionality, temperature and oil

By a ratio of the previous two proportionalities, one finds that for each 870 Gb of oil produced, the global surface temperature rises by 1 °C.

So, cumulative oil production in barrels divided by 870 Gb equals temperature rise above 14.7 °C (equation 3).

It has already been noted that today we have a global warming of about 1 °C above the 19th century level of 14.7 °C, and that just over 857 Gb of oil have been extracted; this matches the proportionality of 870 Gb/°C. The anticipated global warming in 2050, with 1663 Gb of oil having been extracted, would be 1.9 °C, for a temperature of 16.6 °C (61.9 °F).

Summary of proportionalities

Three proportionalities: 264 barrels/person, 3.3 billion people/°C, and 870 Gb/°C, correlate the data and projected trends in world population (above a base of 2.7 billion), cumulative oil production and global warming (above 14.7 °C). Population and oil production are correlated from 1950, while all three quantities are correlated after 1975.

Population (blue), oil (brown) scaled to match temperature rise (red) above 14.7 C, 1850-2050, (see text, proportionalities)

Population (blue), oil (brown) scaled to match temperature rise (red) above 14.7 C, 1950-2050, (see text, proportionalities)

Population (blue), oil (brown) scaled to match temperature rise (red) above 14.7 C, 1950-2020, (see text, proportionalities)

What’s Next?

Are we to believe that these correlations will remain intact until the world’s oil is exhausted? Will we really age to 2050 with an accumulation of 9 billion people, no petroleum, and unchanged climate despite a heating of unprecedented magnitude, comparable to the cooling of the Ice Ages?

Many find it easy to fantasize from this point: ice caps melt, oceans swell, shorelines recede so that countries like the Netherlands and Bangladesh disappear; jungles and deserts expand but in different locations than at present, waves of extinction and population-drop sweep the animal kingdom, equatorial zone agriculture collapses, massive migrations spark wars; America, Europe and Japan militarize heavily, including space, to capture foreign resources and repel invaders and refugees; America invades Canada because the ‘corn belt’ has moved north to the former tundra; the exploding price of oil spurs a frenzy of invention into synthetic fuels and alternate forms of energy, as well as a return to coal and a depletion of timber; sunny territory is invaded and conquered by foreign armies, and used for solar energy plantations by a colonial elite who export the accumulated energy to their imperial homelands.

Politics (finally!)

In fact, we don’t know what will happen, or when. But, we can “use what we know” to begin rational planning now for a transition to a new method of powering our society (particularly transportation systems), and of weaning ourselves from imported energy and the imperialism it seems to require. It would also be wise to rearrange our politics, that is to say remove the inequities between economic classes, so that our nation can retain its integrity while facing the environmental, economic and political pressures to be expected with a shift to a post-petroleum world. The added stress of a civil war during such a time would be tragically cruel.

Such planning is unlikely — at best very difficult — in America, because business has a quarterly-profits myopia, and the electorate in the suburban American “heartland” is thoroughly indoctrinated in capitalist ideology, with an anti-socialist “every man for himself (and women too)” attitude. The world’s revenge for our past imperialism may well be realized by our lack of social planning for the inevitable shocks of the collapse of the oil-powered economy, accompanied by a climate shift.

There are no physical reasons, no “laws of nature” that prevent us from devising an alternative way of organizing and powering our American society. There would certainly be many technical problems and intellectual challenges, but we have the means to prepare for what we can predict is likely to unfold. An enduring society would do this on a continuing basis. To me, that is socialism. Sometimes it’s as simple as seeing that everyone is in the boat, and they’re all rowing in the same direction.

In looking at our political figures, which ones seem to concern themselves with just the self-interest of one or another faction, and which ones seem to concern themselves with the good of the “whole boat?” We need leadership that can draw our involvement into long-term, democratic, social planning that achieves dependable commitments. We need such a process to bear fruit this decade, and we need a well-understood general plan for embarking on an intentional social transformation. If not, we will be the witless victims of a foreseeable catastrophe of our own making.


1.  “Hubbert Peak of Oil Production” – http://www.hubbertpeak.com (as of 29 February 2004).

2.  James M. MacKenzie, “Oil as a finite resource: When is global production likely to peak?” World Resources Institute, 1996 & 2000 – http://www.wri.org/climate/jm_oil_000.html (as of 24 February 2004).

3.  Energy Information Administration, U.S. Department of Energy – http://www.eia.doe.gov (as of 28 February 2004).
“Energy in the United States: 1635-2000” – http://www.eia.doe.gov/emeu/aer/eh/frame.htm
“25th Anniversary of the 1973 Oil Embargo” – http://www.eia.doe.gov/emeu/25opec/anniversary.htm
“U.S. Total Petroleum Consumption” – http://www.eia.doe.gov/emeu/25opec/sld007.htm
“Imported Oil as a Percent of Total U.S. Consumption” – http://www.eia.doe.gov/emeu/25opec/sld002.htm

4.  U.S. Department of Interior, Press Release, 19 March 2003 – http://www.doi.gov/news/030319.htm (as of 28 February 2004).

5.  Bureau of the Census, U.S. Department of Commerce “Population Clock,” – http://www.census.gov/main/www/popclock.html (as of 28 February 2004).
“World Population Information” – http://www.census.gov/ipc/www/world.html
“Total Midyear Population for the World: 1950-2050” (table) – http://www.census.gov/ipc/www/worldpop.html
“World Population: 1950-2050” (graph) – http://www.census.gov/ipc/www/img/worldpop.gif
“Historical Estimates of World Population” – http://www.census.gov/ipc/www/worldhis.html
“Annual World Population Change: 1950-2050” – http://www.census.gov/ipc/www/img/worldpch.gif
“Methodology and Assumptions for the Population Projections of the United States: 1999 to 2100” – http://www.census.gov/population/www/documentation/twps0038.html

6.  “Trend in global average surface temperature,” United Nations Environment Programme / GRID-Arendal – http://www.grida.no/climate/vital/17.htm (as of 24 February 2004).

7.  Intergovernmental Panel on Climate Change (IPCC) of the United Nations Environment Programme (UNEP) – http://www.unep.ch/ipcc (as of 28 February 2004).
“Variations of Earth’s surface temperature for the past 140 years (global), and the past 1000 years (Northern Hemisphere)” – http://www.unep.ch/ipcc/present/graphics/2001syr/large/05.16.jpg
“Variations of the Earth’s surface temperature: years 1000 to 2100” – http://www.unep.ch/ipcc/present/graphics/2001syr/large/05.24.jpg

8.  The reference temperature in [6] is 15.08 °C (the 1961-1990 average), while in [7] it is 15.43 °C (the 1990 value). This article uses the 1860-1920 plateau (estimated average) of 14.7 °C as the reference for global warming. So, the data and projections of temperature “deviations” and “variations,” from [6] and [7], have been adjusted to ensure consistency in describing global warming.

9.  “Global Warming,” National Oceanic and Atmospheric Administration – http://lwf.ncdc.noaa.gov/oa/climate/globalwarming.html (as of 24 February 2004)

10.  “What is Climate Change,” Government of Canada – http://www.climatechange.gc.ca/english/issues/what_is/index.shtml (as of 24 February 2004).