Global Warming is Nuclear War


Global Warming is Nuclear War

The average global surface temperature rose by 1°C during the 110 years between 1910 and 2020.

During the 50 years between 1910 and 1960, the average global temperature rose by 0.25°C, an average rate-of-increase of 0.005°C/year. Another 0.25°C of biosphere heating occurred during the 25 years between 1960 and 1985, a rate-of-rise of 0.010°C/year. During the 20 year span between 1985 and 2005 another 0.25°C of temperature was added, a rate-of-rise of 0.0125°C/year. During the 15 year span from 2005 to 2020 another 0.25°C of temperature rise occurred, with an average rate-of-rise of 0.0167°C/year.

While the average temperature rise of 0.25°C was the same for each of the four intervals, the first (between 1910 and 1960) required 45.5% of the 110 years between 1910 and 2020; the second (between 1960 and 1985) only required 22.7% of the 110 years; the third (between 1985 and 2005) required the smaller fraction of 18.2% of the 110 years; and the most recent period (between 2005 and 2020) took the smallest fraction of 13.6% of the 110 years.

Given that a 1°C rise of the temperature of Earth’s Biosphere (EB) is the equivalent of it absorbing, as heat, the energy yield of 109 billion Hiroshima atomic bomb explosions, we could imagine the EB being bombarded by an average of 1 billion Hiroshima bombs per year between 1910 and 2020 (within 109 year-long intervals). If that yearly bombardment were done uniformly, it could represent 2 Hiroshima bomb explosions per square kilometer of the Earth’s surface once during the year; or it could represent one Hiroshima bomb explosion per day in each 186 km^2 patch of the Earth’s surface, for a worldwide bombing rate of 2.74 million/day. Global warming is very serious!

Let’s refine this analogy so it reflects the acceleration of global warming since 1910.

The 27.25 billion Hiroshima bomb equivalents of heating that occurred between 1910 and 1960 would represent a bombing rate of 545 million/year; or 1.5 million/day spaced out at one daily explosion per 342 km^2 patch of the Earth’s surface.

The 27.25 billion Hiroshima bomb equivalents of heating that occurred between 1960 and 1985 would represent a bombing rate of 1.09 billion/year; or 3 million/day spaced out at one daily explosion per 171 km^2 patch of the Earth’s surface.

The 27.25 billion Hiroshima bomb equivalents of heating that occurred between 1985 and 2005 would represent a bombing rate of 1.36 billion/year; or 3.73 million/day spaced out at one daily explosion per 137 km^2 patch of the Earth’s surface.

The 27.25 billion Hiroshima bomb equivalents of heating that occurred between 2005 and 2020 would represent a bombing rate of 1.82 billion/year; or 5 million/day spaced out at one daily explosion per 103 km^2 patch of the Earth’s surface.

The heating rate for the 1°C temperature rise of the EB since 1910, averaged on a yearly basis, was 5.725×10^24 Joules/110years, or 5.2×10^22 Joules/year, or 1.65×10^15 Watts of continuous heating. This rate of heat storage by the EB (into the oceans) is only 0.827% of the continuous “heat glow” given off as infrared radiation by the EB (mainly at the Earth’s surface), which is 1.994×10^17 Watts at a temperature of 288.16°K (Kelvin degrees; an absolute temperature of 288.16°K = 15°C+273.16°C; absolute zero temperature occurs at -273.16°C).

If we were to imagine impulsively infusing the EB with the same amount of energy, by a regular series of “heat explosions” each of energy release equivalent to the Hiroshima bomb, then the 1 billion explosions per year (the 109 year average) would have to occur at a rate of 31.7 per second.

Atomic bombs release their energy explosively within 1 microsecond, representing a radiated power of 5.25×10^19 Watts for an energy release equivalent to the Hiroshima bomb yield (5.25×10^13 Joules). In this hypothetical exercise, I am lumping all the atomic bomb explosive yield into heat, but in real atomic explosions energy is released in a variety of forms: heat, nuclear radiation (gamma rays, energetic neutrons, X-rays, radioactive material) and blast pressure. The energy forms emitted by atomic bomb explosions ultimately heat the materials they impact and migrate through, and this is why I lump all of the bomb yield as heat.

An explosion sphere with a 56.4 centimeter diameter (22.2 inches) radiating heat at 5.25×10^19 Watts during a burst time of 1 microsecond would present a 1m^2 surface area at a temperature of 5,516,325°K = 5,516,051°C. Imagine 32 of these popping into existence at random points around the world during every second of the day and night since 109 years ago. We would certainly consider that form of global warming a crisis deserving our attention.

Because the invisible low temperature heat glow style of global warming that we actually experience does not rudely punctuate our lives with random blasts of such intense X-ray conveyed heat that any human standing nearby would simultaneously be vaporized while the molecules of that vapor were atomized and those atoms stripped of all of their electrons down to the atomic cores, we ignore it. But the heating effect on the biosphere is energetically equivalent to what we are causing with our greenhouse gas and pollution emissions.

Thermodynamically, we have greenhouse gas-bombed out of existence the pristine biosphere and its habitable climate that first cradled and nurtured the infancy of our species 2000 centuries ago, and then fed and protected the development and growth of that fragile chimera we call “civilization,” which our potentates have been proudly boasting about for at least 8,000 years. And we’re still bombing, now at an ever increasing rate.

All of the numbers quoted here come out of the results described in my report “A Simple Model of Global Warming” that I produced to help me understand quantitatively the interplay of the major physical effects that produces global warming. I invite both the scientists and the poets among you to consider it.

Global Warming Model

70% or less of the sunlight shining onto the Earth reaches the surface and is absorbed by the biosphere. From this absorbed energy, in combination with the presence of water and organic material, all life springs. The oceans, which cover 70.2% of the Earth’s surface and comprise 99.4% of the biosphere’s mass, form the great “heat battery” of the planetary surface. All weather and climate are generated from the heat glow of that battery. A portion of that heat glow, equivalent to the solar energy absorbed, must escape into space for the planetary surface to remain in heat balance, at a constant average temperature. For that temperature being 15°C (59°F), 62.31% of the heat glow must escape.

30% or more of the incident solar energy is reflected back into space, with 24% of that reflection by clouds, and 6% of that reflection from land and ocean surfaces. While snow and ice are the most nearly perfect reflective of such surfaces, they only cover 10% to 11% of the planet and that coverage is slowly being reduced by global warming, increasing the solar heating.

Our introduction of greenhouse gases and pollution particles into the atmosphere has added to the already existing load of naturally emitted humidity, organic vapors and grit from volcanic eruptions and windblown dust. These components of the atmosphere absorb and retain heat (infrared radiation), blocking some of the necessary heat glow loss, and thus warming the planet. The increasing accumulation of these components — because a warmer world has higher humidity producing more clouds, and because of our continuing emission of atmospheric pollutants — scatter an increasing portion of the incoming sunlight back into space, which is a cooling effect called “global dimming.” The imbalance of all these effects is dominated by warming and the biosphere’s temperature is rising at an accelerating rate.

My life is a race against the clock of a certain though indeterminate finality. The COVID-19 pandemic has made me very conscious of this inevitability. After seven decades of existence I cannot do everything I want, in terms of living, fast enough. This is not irrational terror, it is awakened appreciation and understanding. There is all of Shelley yet to read, and Keats, and so many more; and so many more birds and flowers, and daylight and nighttime beauties of the Nature to see, and so many more differential equations and physical problems to solve, to not want to go on living. The urge for continuation is innate, genetically programmed, whether in robotic virus particles or in cognitive life forms like cats and human beings. For me, that cognition includes the irrational emotional desire to combat global warming so that future generations of all Earth’s life forms have decent chances of continuing.


Manuel García, Jr.’s Worldview, 2020


Manuel García, Jr.’s Worldview, 2020

I am just over one-eighth of a billionth of humanity, and I think that the impact and value of my thoughts and ideas are about as significant. This year, 2020, I will be 70 years old, and I think that I have probably said everything original that I was capable of saying. I am sure that I will write more of my little essays, and put them out there, but they are more than likely to be repetitions and rehashes of what I have previously written. Right now I cannot imagine squeezing any new insights out of all the reading and studying (and living) I have done in physics, science, history, psychology, Buddhism, and literary fiction.

So, I have compiled a list of 20 of my essays (of recent years), which as a group I offer as representative of my “worldview,” as of 20 January 2020. I post that list here, “for the record,” and for the ‘benefit’ of people new to my web-pages. All of this represents my annual (in January) “state of the world” message.

I have no ego regarding my Internet publications; if they are useful and encouraging to you then great, if not then I think at least they have done no harm.

My plans are to continue absorbing things that interest me, learning as I can, and expressing myself as feels right and enjoyable. I am satisfied that at the very minimum I have improved just over one-eighth of a billionth of humanity.


Eight Categories, and Numbers of Articles in Each:



Article titles are within their respective web-links






























CO2 and Climate Change, Old and New


CO2 and Climate Change, Old and New

How long has science known about CO2-induced climate change, and are we clever enough today to geo-engineer our way out of cooking ourselves to extinction?

In brief: a long time, and most likely no.

Clive Thompson has written engagingly about the 19th century scientists — Joseph Fourier (1768-1830), Eunice Newton Foote (1819-1888), John Tyndall (1820-1893), Svante Arrhenius (1859-1927), Arvid Högbom (1857-1940), and Samuel Pierpont Langley (1834-1906) — whose work in aggregate pieced together the essential facts about CO2-induced global warming. [1]

In 1856 Eunice Newton Foote, an American woman, suffragette and amateur scientist, conducted the first known experiment in CO2-induced climate change science, which proved carbon dioxide and water vapor were radiant-heat trapping and retaining gases, and not thermally transparent as generally believed. In the scientific paper she submitted to the American Association for the Advancement of Science (which had to be presented by a man) she prophetically observed: “An atmosphere of that gas would give to our earth a high temperature.”

Between 1859 and 1860 Irish physicist John Tyndall conducted many elaborate experiments that confirmed Eunice Newton Foote’s results with great precision (without acknowledging her, whether intentionally or out of ignorance is unknown). He found that CO2 could trap 1,000 times as much heat (infrared radiation) as dry air.

In 1896, after an arduous yearlong effort, Swedish scientist Svante Arrhenius created the first model of CO2-induced climate change, aided theoretically by geologist Arvid Högbom’s findings on the carbon cycle, and aided experimentally by Samuel Pierpont Langley’s thermal detector invention.

Quoting from Clive Thompson’s article:

When [Arrhenius] was done, he made a striking prediction: If you doubled the amount of CO2 in the atmosphere, it would raise the world’s temperature by 5 to 6 degrees Celsius. Remarkably, that analysis holds up pretty well today, even in an age where climate analysis involves far more information and variables and are crunched by cloud supercomputers. Despite having done his work by hand, using data that even he regarded as woefully inadequate, Arrhenius reached “a conclusion that millions of dollars worth of research over the ensuing century hardly changed at all,” as Isabel Hilton wrote in 2008. The era of modern climate modeling was born. …[Arrhenius] expected it would take 3,000 years — fully 30 centuries — for CO2 levels in the atmosphere to rise by 50%. Instead, [they] shot up by 30% in only one century.

In the century since Arrhenius (the 20th century), the scientific awareness of CO2-induced global warming skipped along to Guy Stewart Callendar in 1938, Hans Seuss in 1955, Roger Revelle in 1957, the computational three-dimensional Global Climate Model by Syukuro Manabe and Richard T. Wetherald in 1975 (where doubling CO2 in the model’s atmosphere gave a roughly 2°C rise in global temperature), and then to James E. Hansen’s striking Congressional testimony in 1988 that changes in the atmosphere due to human pollution “represent a major threat to international security and are already having harmful consequences over many parts of the globe.” [2]

The Intergovernmental Panel on Climate Change (IPCC) of the United Nations was established in 1988, and since then we have all known or denied the truth of the matter, to variously fret gloomily or agitate frantically over it, and to governmentally ignore responding usefully to it.

Well, our food, wealth, comfort, entertainment and daydreams are all disgorged (or destroyed if you’re among the sacrificed) by fossil-fueled capitalism, so cook ourselves we must because we can’t bring ourselves to trim any of those economically fungible desirables. Can our clever technologists geo-engineer an atmospheric CO2 retrieval and sequestration technique? Today, many such ideas are being proposed and explored experimentally, which their promoters hope if developed successfully into patented salvations will shower them ceaselessly with torrents of gold.

One such project that has shown technical feasibility is the Carbfix Project in Iceland, where CO2 gas is mixed into and retained by a large quantity of water (salt or fresh) that is then injected under pressure deep underground (800 to 2000 meters) into formations of vesicular or porous basalt rock. Basalt is a mafic extrusive igneous rock formed from the rapid cooling of magnesium-rich and iron-rich lava exposed at or very near the surface of a terrestrial planet or a moon; for example at spreading centers between tectonic plates. Iceland sits athwart the Mid-Atlantic Spreading Center and is an island mountain of volcanic and geothermal activity. The Carbfix scientists and engineers have demonstrated the petrification of aqueous CO2 into carbonate rock nodules within basalt vesicles (pores). Basalt does not wash away under pressurized aqueous injection, as softer sedimentary rocks do, and the metals in basalt are needed to react with the carbonated water (ideally the CO2-water mixture having been pushed entirely into carbonic acid) to petrify it. [3]

The pumping of CO2 into deep basalt formations, for petrified sequestration, has been known scientifically since 1976 (first proposed by Italian physicist Cesare Marchetti) [4], [5]. In 2012, as a satirical hypothetical example of fossil-fueled fanaticism, I proposed that the United States capture all the CO2 released by burning the expected liquid fuel to be processed out of the Athabasca Oil Sands of Alberta, Canada (to be imported to the U.S. via the proposed Keystone Pipeline), by piping that CO2 300 kilometers (186 miles) west of the Oregon coast into the Pacific Ocean and then under extreme pressure down 2,700 meters (8,900 feet) into the basalt formations of the Juan de Fuca tectonic plate. [6]

The difficulty with any carbon sequestration technique is demonstrating that it has a positive Energy Return On Energy Invested (EROEI).

Basically, is the amount of energy expended per unit mass of CO2 sequestered (the energy to capture, store, transport, pump and contain the CO2 underground) LESS THAN the energy liberated (with perhaps only 30% of it converted to useful work — mechanical/electrical energy/power/torque) from the combustion of whatever amount of fossil fuel produces that same unit mass of CO2?

If not (which has always been the case so far) then it is MORE EFFICIENT, and LESS CO2 releasing to- and accumulating in- the atmosphere, to not burn the fossil fuel in the first place. Consequently, it would be unnecessary to bother with the proposed geo-engineering scheme of CO2 retrieval and sequestration.

But even if such a sequestration scheme has a negative EROEI, wouldn’t it at least slow the overall rate of CO2 emissions from our fossil-fueled civilization?, and so slow the ever-increasing rate of global warming?

A better investment of the energy required for negative EROEI sequestration schemes would be to apply that fossil fuel-derived energy to the construction of reliable (well-known, old in concept advanced in construction) robust for the long-term ‘green’ energy technologies that REPLACE (not add to) an equivalent capacity (in Watts) of existing fossil-fueled power-generating and power-using infrastructure: a fossil-fueled conversion to a green energy future. This in fact is the only realistic and practical Green New Deal (GND) that we could have. We are locked into cooking ourselves disastrously but we could do it at a slower rate — and that is what a real GND would be.

To my mind the fact that terrible climatic things are unavoidably scheduled to happen does not mean that we — humanity — are physically helpless to prevent the worst of all possible fates, by vigorously responding with intelligent and cooperative social adaptations (lifestyle simplification and energy efficiency) and clever engineering for an ongoing and permanent transition from fossil fuels to green energy.

The state of the natural world is a mirror to our civilization in the same way that Dorian Gray’s poisonously false beauty was reflected by his hideously magical portrait picture.

Thanks to Katje Erickson for pointing me to items [1] and [3].


[1] How 19th Century Scientists Predicted Global Warming
by Clive Thompson
(Today’s headlines make climate change seem like a recent discovery. But Eunice Newton Foote and others have been piecing it together for centuries.)
17 December 2019

[2] Climate Change Denial is Murder

[3] Researchers In Iceland Can Turn CO2 Into Rock. Could It Solve The Climate Crisis?
by Robin Young and Karyn Miller-Medzon
10 December 2019

[4] Carbon sequestration

[5] Ocean storage of carbon dioxide

[6] Energy for Society in Balance with Nature


From Caesar’s Last Breath To Ours

After the career: books donated in 2019.


From Caesar’s Last Breath To Ours

Human Life is a sexually transmitted planetary disease, Climate Change is the disinfectant that will cure it. (I’ll explain myself on this later.)

Sam Kean’s concluding 5 paragraphs, on CO2 in the atmosphere, from his book Caesar’s Last Breath (And Other True Tales of History, Science, and the Sextillions of Molecules in the Air Around Us, 2017, Back Bay Books, Little Brown & Co) are interesting, being a series of statements of long-known physical quantities. Since I studied “gas physics” for my graduate studies (in the 1970s), and I developed an interest in climate change at least by 2004 (when I published my first article on climate change), I’ve known the basic facts Kean commented on for quite some time.

In one of my technical books on gas physics (Introduction to Physical Gas Dynamics, by Walter G. Vincenti and Charles H. Kruger, 1965, John Wiley & Sons, NY) an example is given in which the authors illustrate the physical phenomena of gaseous diffusion by showing that the last breath expelled by Julius Caeser will have taken years to fully disperse in a homogenous manner throughout the earth’s atmosphere, and so each person ‘today’ would likely breath in, on average, 5 molecules of that last breath. One amazing feature of the example is that it shows just how many molecules there are in each cubic meter of air (at sea level and ‘normal’ temperature), 2.69×10^25 per meter^3 = 2.69×10^19 per cm^3. Vincenti and Kruger quote the following from James Jeans’ 1940 book An Introduction to the Kinetic Theory of Gases (Cambridge University Press):

“…, a man is known to breath out about 400 c.c. of air at each breath, so that a single breath of air must contain about 10^22 molecules. The whole atmosphere of the earth consists of about 10^44 molecules. Thus one molecule bears the same relation to a breath of air as the latter does to the whole atmosphere of the earth. If we assume that the last breath of, say, Julius Caesar has by now become thoroughly scattered through the atmosphere, then the chances are that each of us inhales one molecule of it with every breath we take. A man’s lungs hold about 2000 c.c. of air, so that the chances are that in the lungs of each of us there are about five molecules from the last breath of Julius Caesar.”

The average spacing between air molecules (at sea level, or “standard temperature and pressure” = STP) is about 3.3×10^-7 centimeters. Since air molecules travel at an average speed of 5×10^4 centimeters/second (at STP), and each such molecule travels an average distance of 6×10^-6 centimeters before colliding into another molecule (obviously whizzing by many others between collisions), the frequency of collisions per molecule is about 10^10 collisions/second, or about 10 collisions per nanosecond.

Each such collision will deflect the colliding molecules into new directions of travel, so it can take them a very long time to actually transport from Point A to Point B separated by global distances. One number bandied about by commentators on climate change (who at least halfway know what they’re talking about) is that it takes “30 years” for local CO2 emissions to begin having a “global effect” as part of global warming. This is basically the timescale of atmospheric homogenization by diffusion of the locally emitted plumes, because of course the individual CO2 molecules of such plumes are quite ready to absorb infrared radiation, and lose it as heat released to other air molecules during collisions (the actual mechanics of global warming) from the instant those CO2 molecules are formed.

A different indicator of atmospheric trace gas homogenization is that a uniform (independent of geographical location) quantity per unit mass of radioactive fallout absorption/take-up by trees was first measured (recently, from tree corings) to have occurred in late 1965. Radioactive fallout was first created in 1945, and the greatest number of atmospheric (and any) nuclear explosions, by far, occurred in 1962. Some geologists have now proposed labeling the beginning of the Anthropocene from late 1965, and calling that year the end of the Holocene (which is/was the current geological epoch, which began with the last glacial period/retreat approximately 11,650 years ago). “Anthropocene” because it is the first epoch in which human activity (anthropo) has a global geophysical impact; such impacts being worldwide nuclear fallout (as in the 1957 book and 1959 movie On The Beach), and anthropogenic CO2/greenhouse gas-driven global warming.

When I first wrote about global warming/climate change, it was out of this perspective as a gas physicist trying to explain the technical details to a lay audience. I soon learned that the audience was not only laying, but snoring. I was trying to prod “people” into action to forestall climate change by “greening” energy technology, since I was also an engineer focused on “energy” and “efficiency.” Plus I was hoping a huge public shift in this direction would open up some nice ($$$) job opportunities for me. But the snoozing audience just wants consumerism at the lowest common denominator level, and the Big Bosses just want bombs (and money for themselves). So no sweet high-tech green-physics job for me, but more firepower for the ‘criminalated’ psychopaths who are our guiding self-worshipping self-imagined Olympians, more gargantuan Black Friday tsunamis of electro-plastic garbage consumerism for the ‘amnesiatariat,’ and as a result giga-tons more carbonation of the atmosphere and acidification of the seas, and less viability for our planet with its growing human population.

Since “the human element” (mental inertia, ego, tribalism) always controls and limits the actualization of any technical enterprise by a group of people — like greening away from fossil fuels — it was quickly obvious to me that though most “solar energy” technologies were ancient and well-understood “we” were not going to give up fossil fuel convenience, wealth-generation and enablement-of-political-power in favor of green energy, and so consequently global warming could only increase. And it has, and will. So I write about climate change “for the art of it” and for personal satisfaction, in particular to put my views “on the record” for my children. But I can only fantasize, without belief, that such writing will have any practical political effect — of course I’d like it to, but I’m a realist. Happily, it’s always nice to hear every now and then from someone who already agrees with my views, that something I’ve written has given them some encouragement.

And that is where the arc of my climate change consciousness — from the science to our society — has brought me to today: human connection. Given that fossil fueled humanity is intransigent, and now the advance of climate change is implacable (“tipping points”), I see the best focus for most people’s limited energies beyond their immediate survival and family needs to be the developing of a consciousness of climate change and political reality, and a commitment to acting toward others at a minimum with benign neutrality and better yet with compassion, honesty and solidarity, so human society is generally improved and economically more leveled, regardless of the geophysical conditions under which it exists at any given time. For a society that is as deeply humane as I’ve suggested (and vastly different than today’s) then if and when we really do enter a rapidly accelerating “end time” our individual exits would be as decently humane as possible because they would be occurring within a societal death-with-dignity of a society of broad solidarity. I suppose this is kind of glum thinking, but maybe that’s an inevitable result of my growing ‘old’ in these times.

All this has been a rather prolix introduction to a video about climate change I thought you might enjoy. The Age Of Stupid is a 90 minute British documentary from 2009 (five years in the making) that remains brilliantly cogent about the “human element” driving the climate change geophysics, and is also refreshingly accurate about the physical details of that geophysics. [1] The Age Of Stupid Revisited is a 15 minute look back on the original documentary, from today. [2] Nothing has changed for the better; for the worse yes. Reflecting on this documentary, on the arc of my climate change consciousness, and on my belief (which I wish future reality would contradict) that there will never be any significant collective action to stop anthropo-exacerbation of climate change, and to also end poverty and to economically level national and world societies, I arrived at the rather tart characterization that: human life is a sexually transmitted planetary disease, and climate change is the disinfectant that will cure it.


[1] The Age of Stupid

[2] The Age of Stupid revisited: what’s changed on climate change?
15 March 2019


Remembering R. P. Kroon

Rein Kroon and another Westinghouse engineer testing strain on celluloid model of mount for Hale Telescope. (Hagley)


Reinout Pieter Kroon (4 August 1907 – 4 August 1992) was my professor for turbomachinery during my Mechanical Engineering undergraduate years (1968-1972) at the Towne School of Engineering at the University of Pennsylvania (which is in Philadelphia). He was a kind, intelligent, witty and perceptive man, with great insights into what engineers — as public-minded, socially conscious citizens — could and should be. This web-page is my appreciative memorial for him.

“Reinout P. Kroon (1907 – 1992) was a Dutch mechanical engineer who immigrated to the United States in 1931 after earning his M.S. degree from the Federal Technical Institute in Zurich, Switzerland. Joining Westinghouse Corporation that year, he soon became a development engineer in the Steam Division.

“In late 1935, Westinghouse sent Kroon to Pasadena to work on the details of the mounting of the 200-inch telescope. During his six-month assignment, Kroon solved three major design issues. First, he designed the hydrostatic pressure system with which the telescope turns in right ascension on a thin film of oil. Second, he designed the horseshoe and ball bearings for the north and south ends of the yoke. Finally, he designed the spoked declination bearings that allow the telescope to travel north and south.

“Later, Kroon became head of engineering research at Westinghouse where he managed a team that in 1945 developed the first commercially viable American jet engine. In 1960, he joined the engineering faculty at the University of Pennsylvania where he rose to the position of chairman of the graduate division of mechanical engineering.” (

Reinout Kroon was the Team Leader at Westinghouse in the making of the first American jet engine. The story of that effort during the World War II years is described by Kroon in his lecture-pamphlet “What’s Past Is Prologue” (shown below), and the unsuccessful effort to commercialize the initial technical triumph of making that turbojet, during the years 1950-1960, is given in detail by Paul D. Lagasse in his 1997 Master’s thesis in American History (

Professor Kroon was a tall, elegant and personable man; he was a fabulous instructor and an inspiring example of an engineer’s engineer. From him I learned more about fluid mechanics and thermodynamics, specifically about turbomachinery, and — most elegantly — dimensional analysis; he was very adept mathematically. A field trip to the Westinghouse plant where huge turbines (for steam turbine electric generators) were built, was memorable. The stamping machines for fashioning the turbine blades were awesome, and loud!

Reinout had one brother, Berend Jan Gerhard (Bert) Kroon; and he was married to Dora Kroon (born Kaestli, on 25 May 1910, in Bern, Switzerland) with whom he had children, one son being Berend Walter Kroon. Reinout Kroon lived in Kennett Square, Pennsylvania. Professor Kroon died tragically in 1992, on his 85th birthday, as a result of injuries sustained some days earlier in an automobile accident.

What’s Past Is Prologue

Kroon, Dimensional Analysis

PDF files of the two pamphlets displayed below are available from the web-links above.


Space & Time Dependent Boltzmann Distribution of Electrons in Gases

(28 June 1994, and a bit later)

Analytical Time Dependent Boltzmann Distribution of Electrons in Gases with Inelastic Collisions
Boltzmann Electrons (t)

Analytical Space and Time Dependent Boltzmann Distribution of Electrons in Gases with Inelastic Collisions
Boltzmann Electrons (x,t)

PDF files of the two reports are available from the links above; the reports are displayed below.



Electric Vortex in MHD Flow

(Spring 1995)

Electric Vortex in MHD Flow

A PDF file of this report is available from the link above; and the report is displayed below.


Closely related:

Proton Beam Driven Electron MHD