Is Climate Change Inevitable?

Magdalenian Girl: a facial reconstruction by Élisabeth Daynès of a 24 year old woman whose ~15,000 year old skeletal remains were discovered in the Dordogne region of southwestern France in a limestone cave known as the Cap Blanc rock shelter.

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Is Climate Change Inevitable?

Greg asks (28 April 2022):

(1) Do you believe that climate change is an inevitable consequence of our highly technical, industrial civilization?

(2) Is it necessary to abandon the American lifestyle to ensure the habitability of the planet?

I’ve asked this question to quite a few people recently, and the general response has been ‘if we don’t do anything drastic now, then yes’.

(3) Is there any data that particularly worries you?

(4) What do you make of this?

<><><><><><><>

My response to Greg:

(1) Yes.

(2) Yes.

(3) Ocean acidification; ocean heating; seawater freshening in the North Atlantic; CO2 lifetime in the atmosphere (long); accelerating rate of deforestation; accelerating rate of carbon (CO2 + CH4) emissions; accelerating rate of fossil fuel use and planned use; expansion and severity of drought, aridity and “heat”; low use of regenerative agriculture despite increasing soil depletion and crop failures (food); biodiversity loss in general: plants, mammals, fish, insects; the low fraction of materials being recycled.

Forgive me for not quoting numbers for “data” here, but I am sure such can be found by any interested person with an Internet connection and who is willing to spend some time in the search.

(4) Global Warming Climate Change (GWCC) is an inevitable result of the high volumes of CO2 and greenhouse gas emissions exhausted by powering our highly technical, energy-intensive industrial civilization with fossil fuels. That “powering” also includes the use of extensive industrialized chemical and factory farming for soil-depleting and high water use/irrigated monoculture food production; and for huge production and polluting waste of (hydrocarbon-derived) plastics.

I believe it is possible to have a worldwide equalization of the standard of living to a high and “modern” level, by a combination of (a,b,c,d):

(a) using “green” (a.k.a., “sustainable”) sources of energy (solar-electric, solar-thermal, wind, hydro, tidal, geothermal),

(b) commitments to lifestyles based on efficiency instead of consumerism,

(c) the use of technology (e.g., aided by electronics and computers) to improve the harvesting of energy and its distribution through linked local networks,

(d) a political consensus to democratic socialism (since capitalism, militarism and fascism are inherently anti-egalitarian and tied to high uses of fossil fuels, for “power”).

It is only a GWCC Earth-degrading zero-sum game of “survival” if calorie-and-kilowatt exclusionary tribalism is paramount. That need not be the case, but the alternative “green” paradigm would require a global consensus to deep cooperation of indeterminate duration, and to large-scale, long-term economic planning.

The many dramatic scenarios about “the collapse of civilization” and “human extinction” in ‘X’ number of years, published (like most everything) as hyperbole to get attention, all presume (and most desire) a continuation of current trends — “business as usual” — and are thus only useful to the extent they prompt wider thinking and action along the lines of the Green Paradigm (GP) that I described.

By direct observation of our social reality today, all those scary predictions have so far been useless. The American Way Of Life (AWOL) and extreme worldwide inequity seem safely assured of being able to continue plowing on as the unwinding story of our civilization for quite some time. Perhaps some serendipitous shock will alter world consensus thinking before it is “too late.”

We are each and all wedded to our ways of life, our “lifestyles,” our routines and our expectations, and even the thought of making profound and permanent changes to those is resisted because in essence such changes would mean changing how we think of ourselves, and changing how we actually “are” and act.

There are always some people doing this, individually, at any time: when confronted by a sufficiently “life-changing” event, or tragedy, or flash of enlightenment, and they are then compelled by their new outlook to deconstruct and then reconstruct themselves into a new form. Some call this “rebirth,” others “recovery,” and some “conversion” or “satori.”

The great challenge of transitioning our current civilization to the Green Paradigm (or, the Post-Carbon World) is that most of the worldwide us would have to make such personal permanent changes concurrently within a timescale of at most a decade, and cooperatively on nested geographical scales from local to national to international.

The planetary-scale problem of Global Warming Climate Change and Biodiversity Collapse cannot be “solved” in a haphazard, piecemeal, sporadic, short-term manner; the solution procedure must be a permanently sustained comprehensive effort of planetary scope. Climate Change science has shown us that the weaker that effort, and the longer the delay before starting it (which ideally should have been decades ago), the sooner and longer (centuries? millennia?) and worse will be the sequence of environmental challenges and disasters we and our descendants will have to experience.

On the basis of my own calculations of Global Warming — which are generally consistent with the results of the professional climate scientists, and which I have described in numerous articles posted elsewhere — I see global warming continuing for a long time regardless of what we do or don’t do about it. However, the more timely and extensive and sustained our counteractions against it — that is, the extent and promptness of the “greening” of our civilization — the slower the rate-of-rise of that global warming, the lower the ultimate temperature plateau at which it peaks, and the sooner the world average temperature cools back to the lovely pre-industrial level that nurtured the 15,000+ year development of our human civilization. But we should think in terms of centuries of committed effort in order to achieve that complete recovery.

Finally, I wish to make a positive sociological point. Anything we do to improve human solidarity, social cohesion, “economics as if people mattered,” the worldwide standard of living and its uniformity (the Human Development Index) — because such socio-economic changes are needed in order to construct our response to GWCC — would make the experiences of life better for every individual regardless of whatever subsequent geophysical-environmental challenges came our way, and for however long our Green Paradigm civilization managed to continue.

Instead of tribes competing to “live longer” than the rest, we would be cooperating to all “live well together” for whatever timespan of habitability Planet Earth would be willing to allow us.

My advice: be grateful, be kind, have fun, and give life and love your best efforts throughout your time alive.

<><><><><><><>

Endgame For Green Utopia

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Endgame For Green Utopia
[REVISED, EXPANDED, IMPROVED, 12 May2020]

On these two opposing types of responses to the movie “Planet Of The Humans”
(https://planetofthehumans.com/):

PRO: “The key, however, is that all these [‘greenish’] energy policies have to be carried out after capitalism has been wiped out and under conditions where production is based strictly on use.“

CON: “This documentary is trashy fake news. It’s Trumpian in its disdain for the facts…, they point away from real climate action solutions (such as renewable energy infrastructure) and peddle fascist snake oil of population growth i.e. advocate ecofascist genocide…Meanwhile, those of us who aren’t raving ecofascist lunatics will continue to fight to change society.”

Dreams of Utopias and illusions of self-importance die hard, even in the face of reality. Nature doesn’t care about how we fantasize; it just keeps on with its grand cycles, which those of global heating, environmental destruction and species extinction are now overstimulated by us, homo sapiens. The fundamental question here is: how good of an equitable world society could we energetically have, and by ‘greening it’ can we limit global warming?

PART 1:

The best we could possibly do would be to equalize the standard of living (Human Development Index) worldwide to HDI=0.862 (the range is from 0.28 for the poorest, to 0.97 for the richest nations), with a per capita electrical energy use of u=4000 kWh/c (kilowatt-hours-per-year/capita). The world average by nation (in 2002, and similar now) was: HDI=0.741 at u=2465 kWh/c. The U.S.A. had HDI=0.944 at u=13,456 kWh/c (a rich highly developed country). Niger had HDI=0.281 at u=40kWh/c (a poor underdeveloped country).

The recommended leveling is for nations with u>4000kWh/c to REDUCE energy use (a.k.a economic activity AND militarism), and nations with u<4000kWh/c to INCREASE energy use ENTIRELY APPLIED to raising living conditions (a.k.a. human-centered health and welfare: “socialism”).

This means world socialist government and no wars, and no nationalism.

Examples of enlightened HDI=~0.861 countries (ranked by energy efficiency) are Malta (HDI=0.867), Czech Republic (HDI=0.874), Estonia (HDI=0.853). There is no excuse for a nation to expend more than u=6560kWh/c, because that was Ireland’s usage and it had an HDI=0.946 (and a phenomenal energy efficiency as I calculate it).

All of this is to equalize the experience of whatever is going to happen to humanity because of geophysical changes (“global warming”).

My numbers for the above come from the following linked analysis (using 2002 data).
https://manuelgarciajr.com/2019/06/09/linking-energy-use-and-human-development/

PART 2a:

From where do we source that energy powering the world-equalized “decent life”? Obviously, we use the fossil fuel and nuclear power infrastructure that we have now to power a maximum effort “full speed ahead” program of developing, building and installing greenish energy technology based on:

– solar (from light-to-heat in water, oil and brine slurry pipes; and also photovoltaics but that is materially limited for the needed exotic elements),

– wind (especially offshore),

– hydro (using existing dams-plus-reservoirs as “pumped storage” facilities, so “excess” solar energy collected during the day pumps water “uphill,” which can then be released “downhill” through the turbo-generators to produce nighttime electricity),

– wave/tidal as possible (without wrecking important inter-tidal bio-zones),

– energy conservation by building/home design (both for insulation, energy capture and greenhousing),

– energy conservation by design of appliances and the mechanical and thermal systems used industrially and for personal living,

– also a necessary transformation of our transportation sector (for bicycles, trolleys, trains, ships even with sails; and bye-bye to most planes, most cars especially big-engined SUVs and trucks, cruise ships, and all that high-waste military gear),

– also necessary is a transformation of agriculture to localized small organic multiculture farms, and away from international-aimed large oil-chemical stimulated monoculture agro-factories/feedlots/plantations.

PART 2b:

As greenish energy sources come on-line, an equivalent generating capacity of fossil and nuclear infrastructure is taken off-line AND SCRAPPED (and materially recycled/reprocessed).

The goal is to always increase the proportion of greenish technology and always decrease the proportion of old energy technology, while keeping the total energy generation such as to provide u=~4000kWh/c worldwide (to maintain HDI>0.862 worldwide).

It will never be possible to eliminate all of the old energy technology and still maintain the decent level of HDI “we” experience and is the moral right of all 7.78B (and growing) of Earth’s people to experience.

Note that fertility rates decrease (they are already negative in some rich countries) as HDI increases; so the rate of population growth will diminish as higher standards of living are widely experienced; with greater physical, heath, child, and economic survival and security, as well as education, provided socialistically worldwide.

ENDGAME:

Global warming would most likely still continue, but at a slower pace, if given all the above. So the endgame is to equalize the experience of “the geophysical inevitable” (whatever it actually ends up being), while always striving to increase energy efficiency so as to maximize HDI given the energy used.

It seems PHYSICALLY POSSIBLE to have a very high standard of living worldwide (HDI~0.9) with a per capita energy use that is at least 3x less (or, at 1/3 current US-level usage) to 7x less (or, at 1/7 current usage by the most profligate) of ‘rich, energy-wasting nation’ usage.

But global warming (the buildup of greenhouse gases in the atmosphere) may be too far advanced to ever stop by throttling back or even eliminating human (economic) activity; though undoubtedly it could be noticeably slowed by such cutbacks, as has been vividly demonstrated in a very short time by the COVID-19 economic slowdown that has visibly reduced pollution, and afforded greater freedom to wildlife (seen roaming in emptied city streets around the world!).

All of this would mean the ‘best world available’ for ‘everybody’ for as long as it is energetically possible to maintain it. And if human extinction is ultimately unavoidable, then we’ll all go together as brothers and sisters of equal rank.

Now to all who would say that this “all in” paradigm is so psychologically and politically improbable that it will never happen, I say fine, I won’t argue it, but realize that in order to accurately and realistically gage the actual (really potential) value of whatever your scheme or dream for Utopia is, it is essential to know how to calculate what is POSSIBLE within the limits imposed by geophysics (the laws of physics and the workings of Nature) given the natural resources sustainably available from Planet Earth (this is to say without the degradation of its environments and biodiversity).

One small example. Today it is possible to use an ‘app’ on your smart-phone to alert your local coffee shop to prepare your preferred caffeinated concoction, and pay for it electronically over the vast internet-banking computer network (humming and exhausting heat 24/7), then drive to your Java pit-stop and pick up your to-go order, discarding the container after consuming the contents, which container may end up as soiled waxed paper in a municipal organic compost pile, or as plastic in a solid waste landfill, or at worst as litter.

Imagine that modality of coffee consumption is gone in the “all in” world, and instead you have to appear in person at your coffee shop — perhaps on one of your walks into town, or on the walk home from the trolley stop after work — place your order to a human being manning the Java-preparing technology, pay cash (to eliminate all the internet energy-to-heat waste), and drink your coffee from a washable mug you carry or they provide; or, extravagantly, from a paper cup that easily composts. Even more efficiently, you could buy a bag of coffee beans, take them home and grind them with a handcrank grinder, and make delicious coffee at home.

The quality of life is not diminished by simplifying it energetically, or by relaxing its pace. More likely these increase it.

4000kWh/c HDI>0.862 Equalized Green Utopia World:

The 4000kWh/c Equalized Green Utopia World (HDI>0.862) would need 18% more electrical generation than in 2017 (for a world total of 30,189TWh), and applied with 62% greater efficiency for producing social value than we currently do.

In our current World Paradigm, we only get an average of 62% of the potential social value inherent in the world electrical energy generated, and which social value is also very inequitably distributed. The average 38% of annual socially wasted (SW) electrical energy (9,730TWh total at 1,289kWh/c in 2017) goes into all the Social Negativity (SN) of: capitalist-economic, nationalist-political and prejudicial-societal inequities; militarism and wars; and to a lesser degree some technical inefficiencies of electrical generation and of appliances.

The potential (or Primary) energy (PE) contained in the natural resources (all raw fuels and sources) used to generate the World Energy in 2017 was 162,494TWh; and 25,606TWh of electrical energy was generated that year, which was 15.8% of the Primary Energy. That percentage can be taken as a lower bound on the efficiency of our current conversion of raw energy resources into socially applicable energy, because some quantity of fuel (PE, with some refined) is converted by combustion directly to heat, both to drive heat engines and for industrial and personal uses (e.g., smelting, cooking, heating).

CONCLUSIONS:

For a 4000kWh/c Equalized Green Utopia World “today” we would need 18% MORE usable (electrical and available heat) energy than consumed in 2017, applied with 62% GREATER EFFICIENCY for producing social value than we do currently. Eliminating today’s Social Negativity (SN) would be the energetic equivalent of gaining 38% more energy (in our current paradigm).

But global warming will continue because it is impossible to eliminate all CO2 and greenhouse gases producing processes of energy generation and use. The rate of increase of global warming (the upward trend of temperature) can be reduced as the purely Green (non-CO2 and non-greenhouse gases producing) methods of energy production and use provide a larger portion of the total World Energy production and consumption.

EXCERPTS FROM: World Energy Consumption
[HEAVILY EDITED and AMENDED by MG,Jr]
https://en.wikipedia.org/wiki/World_energy_consumption

According to IEA (in 2012) the goal of limiting warming to 2°C is becoming more difficult and costly with each year that passes. If action is not taken before 2017 [sic!], CO2 emissions would be locked-in by energy infrastructure existing in 2017 [so, now they are]. Fossil fuels are dominant in the global energy mix, supported by subsidies totaling $523B in 2011 (up almost 30% from 2010), which is six times more than subsidies to renewables. So, limiting the global temperature increase to 2 degrees Celsius is now doubtful.

To limit global temperature to a hypothetical 2 degrees Celsius rise would demand a 75% decline in carbon emissions in industrial countries by 2050, if the population is 10 billion in 2050. Across 40 years [from 2010 to 2050], this averages to a 2% decrease every year.

But, since 2011 the emissions from energy production and use have continued rising despite the consensus on the basic Global Warming problem. Hypothetically, according to Robert Engelman of the Worldwatch Institute [in 2009], in order to prevent the collapse of human civilization we would have to stop increasing emissions within a decade [by 2019!] regardless of the economy or population.

Carbon dioxide, methane and other volatile organic compounds are not the only greenhouse gas emissions from energy production and consumption. Large amounts of pollutants such as sulfurous oxides (SOx), nitrous oxides (NOx), and particulate matter (like soot) are produced from the combustion of fossil fuels and biomass. The World Health Organization estimates that 7 million premature deaths are caused each year by air pollution, and biomass combustion is a major contributor to that pollution. In addition to producing air pollution like fossil fuel combustion, most biomass has high CO2 emissions.

FINALLY:

Even with the 4000kWh/c HDI>0.862 Equalized Green Utopia World, global warming would continue at a rate faster or slower depending on how low or high, respectively, a proportion of World Energy is generated and used by purely Green methods. To repeat:

All of this would mean the ‘best world available’ for ‘everybody’ for as long as it is energetically possible to maintain it; and if human extinction is ultimately unavoidable, then we’ll all go together as brothers and sisters of equal rank.

The quality of life is not diminished by simplifying it energetically and by relaxing its pace. More likely it would be increased even in today’s paradigm; and most decidedly so with the elimination of Social Negativity in all its forms, which are so wasteful of energy.

Our potential civilizational collapse and subsequent extinction is up to Nature; but whether that occurs sooner or later, and with what level of shared quality of life we experience our species’ remaining lifetime, as well as its degree of equitable uniformity, is entirely up to us.

<><><><><><><>

<><><><><><><>

A Measure of Societal Vitality

Figure 1, HDI vs. kWh/c, data points and statistical average,
linear plot, from 10 kWh/c to 29,247 kWh/c, (2002 data)

Figure 2, HDI vs. kWh/c, data points and statistical average,
logarithmic plot, from 10 kWh/c to 29,247 kWh/c, (2002 data)

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

A Measure of Societal Vitality

Following is my response to Robert Hunziker’s article “Kill GDP to Help Save the Planet,” published in Counterpunch on 2 January 2020. [1]

Robert Hunziker describes why the economic statistical measure known as GDP — Gross Domestic Product — is a deeply flawed indicator of the actual economic health and societal wellbeing of the United States, and really of any nation. As Hunziker notes, it is based purely on “the monetary value of all finished goods and services,” and as Joseph Stiglitz has shown (as pointed out by Hunziker): “The world is facing three existential crises: (1) a climate crisis, (2) an inequality crisis and (3) a crisis in democracy… Yet the accepted ways by which we measure economic performance gives absolutely no hint that we might be facing a problem.” I agree.

Is there a statistical measure that overcomes these objections? Yes: the Energy-HDI Efficiency Number. Explanation follows.

The United Nations uses an economic parameter called the Human Development Index (HDI) to characterize the typical standard of living of every nation. [2]

It is observed that affluent nations have high HDI scores (they range from 0 to 1) and a high use of electrical energy per year per capita (in kilowatt-hours/year/person the range is from 0 to 30,000), while poor nations have relatively low values for both quantities. In 2006, I made a study of the correlation of national HDI to the electrical energy use per capita, for 177 nations. [3]

The Human Development Index

The UN Human Development Index (HDI) is a comparative measure of poverty, literacy, education, life expectancy, childbirth, and other factors for countries worldwide. It is a standard means of measuring well-being, especially child welfare.

The index was developed in 1990 by the Pakistani economist Mahbub ul Haq, and has been used since 1993 by the United Nations Development Programme in its annual report.

The HDI measures the average achievements in a country in three basic dimensions of human development:

1. A long and healthy life, as measured by life expectancy at birth.

2. Knowledge, as measured by the adult literacy rate (with two-thirds weight) and the combined primary, secondary, and tertiary gross enrolment ratio (with one-third weight).

3. A decent standard of living, as measured by gross domestic product (GDP) per capita at purchasing power parity (PPP) in USD.

Each year, UN member states are listed and ranked according to these measures. Those high on the list often advertise it, as a means of attracting talented immigrants (economically, individual capital) or discouraging emigration.

The Human Development Index is the average of three indices: the Life Expectancy Index (LEI), the Education Index (EI) and the GDP Index (GDPI).

The Education Index is itself a weighted sum of: the Adult Literacy Index (ALI, weight = 2/3) and the Gross Enrollment Index (GEI, weight = 1/3).

All of these measures have minimum and maximum values, which appear in the differences and normalizations used to construct the three major indices. The formulas are as follows:

LEI = (LE – 25)/(85 -25),
LE = life expectancy in years;

EI = (2/3)*ALI + (1/3)*GEI;

ALI = (ALR – 0)/(100 – 0),
ALR = adult literacy rate;

GEI = (CGER – 0)/(100 – 0),
CGER = combined gross enrolment ratio;

GDPI = [log(GDPpc) – log(100)]/[log(40000) – log(100)],
GDPpc = GDP per capita at PPP in USD;

HDI = [LEI + EI + GDPI]/3.

The Human Development Index is a measure that helps to capture the overall socio-economic health of a country, and a measure that allows for useful comparisons whether by international bodies like the UN or concerned individuals.

Linking Energy Use And Human Development

It is evident that a higher standard of living, as indicated by HDI, will obtain when a greater quantity of electrical energy per capita (kWh/c/yr) is available. Yet, in 2002 Ireland expended 6560 kWh/c/yr to provide its people with an HDI of 0.946, ranking 8th in the world; while Saudi Arabia expended 6620 kWh/c/yr (essentially the same as Ireland) to only provide its people — on average — with an HDI of 0.772, ranking 77th in the world.

It is obvious that Ireland made much more efficient use of the energy it expended in order to support the wellbeing of its people. That wellbeing must necessarily include caring for the natural environment within which the national population lives. The statistical measure that I propose for indicating the degree to which a nation’s energy consumption provides for a healthy society is the Energy-HDI Efficiency Number. In 2002, Ireland’s Energy-HDI Efficiency Number was +21 (the world leader), while Saudi Arabia’s was -50, ranking at best 38th in the world (in 2002, the year of the HDI data available for my 2006 study).

In 2002, the U.S.A. expended 13,456 kWh/c/yr to provide its people with an HDI of 0.944, ranking 10th in the world, with an Energy-HDI efficiency number of -1, a level of overall performance behind 21 other nations despite having the 9th highest per capita energy expenditure.

What makes for Energy-HDI efficiency?: low GDP waste on a military establishment, an arms industry, and unproductive government subsidies as with underwriting Wall Street bankster gambling losses; wide use of energy efficient equipment, methods and attitudes; minimal income and wealth inequality; robust national social welfare programs; and diligent stewardship of a healthy natural environment, which naturally contributes to healthy human longevity. [4]

Some nations do a great deal with very little, like Cuba, with an HDI of 0.817 and an HDI rank of 52 out of 177 with an expenditure of only 1395 kWh/c/yr (in 2002). In my study I found that, statistically, a nation would have had to use 2425 kWh/c/yr in order to provide an HDI of 0.817. It is as if Cuba had generated its social benefits with only 57.5% of the electrical energy one would expect. [3]

Societal Vitality

Regardless of what anyone says, all national economies are exercises in intentional social engineering, and as such their features and their degrees of success at providing popular wellbeing can be characterized numerically. GDP alone is a poor indicator of societal health and vigor, but HDI and the Energy-HDI Efficiency Number are much better indicators of societal vitality.

The value of any such indicator, like the temperature shown on an air thermometer outside your window, and the speedometer in your automobile, is to apprise you quantitatively of your current reality so that you can then go and do something intelligent and useful in dealing with it. That is what we have to do about the societal vitality of our national economies and the natural environments they reside within: characterize their overall performances truthfully, and then fix them.

Notes

[1] Kill GDP to Help Save the Planet
Robert Hunziker
https://www.counterpunch.org/2020/01/02/kill-gdp-to-help-save-the-planet/

[2] Human Development Index
http://en.wikipedia.org/wiki/Human_Development_Index

[3] An Introduction Linking Energy Use And Human Development
28 April 2006
https://manuelgarciajr.com/2019/06/09/linking-energy-use-and-human-development/

[4] TABLE: Country Ranking by Energy-HDI Efficiency Number
9 June 2019
https://manuelgarciajr.files.wordpress.com/2019/06/table-a.jpg
AND
https://manuelgarciajr.files.wordpress.com/2019/06/table-b.jpg

<><><><><><><>

Linking Energy Use And Human Development

This is a re-posting of my report An Introduction Linking Energy Use And Human Development, from 28 April 2006 — unchanged. This is another of my personal favorites. A PDF copy of the report is available through the web-link given below.

An Introduction Linking Energy Use And Human Development
28 April 2006
https://manuelgarciajr.files.wordpress.com/2011/11/efhd_r_01.pdf

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>



























<><><><><><><>

<><><><><><><>

Of related interest and more recent:

Energy for Human Development
9 November 2011
https://manuelgarciajr.com/2011/11/09/energy-for-human-development/

Energy for Society in Balance with Nature
8 June 2015 (27 February 2012)
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

Our Globally Warming Civilization
2 June 2019
https://manuelgarciajr.com/2019/06/02/our-globally-warming-civilization/

Oil, Population, Temperature, What Causes What?
9 June 2019
https://manuelgarciajr.com/2019/06/09/oil-population-temperature-what-causes-what/

<><><><><><><><><><><><><><><><><><><><><><><><><><><>

Abortion: White Panic Over Demographic Dilution

A September 6, 2017 report by the PBS Newshour (https://www.pbs.org/newshour/nation/white-christians-now-minority-u-s-population-survey-says) states that “White Christians are now a minority of the U.S. population,” at 43%. My op-ed stream-of-rant reaction (perhaps impolite?) to this now established demographic fact follows.

One motivation for US conservatives’ opposition to abortion – “a woman’s right to choose” – as stated by demographer Ben Wattenberg (after the 1970s in his increasingly neoconservative later years), and cited by Jane Elliott (the wonderful educator) in her anti-racism teachings, is that white supremacists’ great fear is over demographic dilution.

American conservatives’ opposition to abortion is not primarily concerned with preventing Blacks, minorities and the poor from procreating too many (and “too costly” to the public purse) non-white babies, but in fact to prevent white women from producing too few white babies.

This was exactly the policy of the Nazi regime in Germany, when bounties were paid for high fertility by acceptably white – “Aryan” – women. The fertility rate of Whites (in Europe, in the U.S.A., in South Africa, in Israel with its captive and concentration-encamped Palestine) is the lowest of all ethnicities/races. Generally speaking, the poorer and darker people are, and the closer to the equator they live or come from, the more children they are likely to have produced and/or have in their families. There is a worldwide darkening of the complexion of humanity underway.

Were there not immigration into the wealthy and comfortable Northern European nations, which we used to think of as “pure white,” they would be losing population in coming decades (if not already). There is a direct INVERSE correlation between an ethnic/racial segment of a national population having greater educational attainment and financial security, and a higher standard of living (a higher level of their nation’s Human Development Index, as tallied by the U.N.), and their fertility rate. The education and emancipation of poor Third World women – teaching them to read, and giving them means of gaining independent income – is the best way to reduce runaway fertility and stabilize “overpopulation.” That is why Whites have the lowest fertility rate as compared with darker and poorer people.

So, Northern Europe, the U.S.A. and other wealthy White enclaves are seeing their share of the population drop (proportionally in their nations). This is due to higher competing fertility more so than by “invasive immigration” by non-whites and foreigners of different type from that of the nativists.

In one sense the Nazi policy was kinder than that of tight-fisted US conservatives today, in that the Nazis provided good maternal medical care nationally to their favored “Aryan” portion of the German population (from 1933 till the war destroyed domestic life in Germany).

Jane Elliott’s basic point is that US white supremacist panic about demographic dilution is what lies behind American political anti-abortion. The pseudo-moralistic religiosity camouflage layered over this “pro-life movement” is just to hide its racist foundation. This religious put-on is easily revealed as a fraud by the complete lack of concern by “moral majority” and “tea party” type nativist-racists about any real threats to women and girls by good-old-boy Roy Moore type child molesters, and other sexual harassers of women, like Donald Trump and many other men in power, especially if white and “conservative.”

Do you imagine the Republicans and their base (indeed) supporters would now be yawning, instead of incensed, over the Stormy Daniels ’Castoff Porn Star Lover Of The President’ affair if it was Barack Obama (or even serial masher Horny Billy the C) she was calling out instead of Trump?

<><><><><><><>

VERSION #2

Abortion: White Panic Over Demographic Dilution
17 May 2019

What is behind the bigotry masquerading as sanctimonious religiosity fervently opposed to abortion in the United States?One motivation for US conservatives’ opposition to abortion – “a woman’s right to choose” – as stated by demographer Ben Wattenberg (in his increasingly neoconservative later years, after the 1970s), and cited by the wonderful educator, Jane Elliott (“White Fear” https://youtu.be/0k3yCG7PHzg), in her anti-racism teachings, is that white supremacists’ great fear is over demographic dilution.

American conservatives’ opposition to abortion is not primarily concerned with preventing Blacks, Latinos, minorities and the poor from procreating too many — and “too costly” to the public purse — non-white babies, but in fact to prevent white women from producing too few white babies. 60% of the 1.6 million abortions annually in the United States are for white women.

The banning of abortion was exactly the policy of the Nazi regime in Germany, when bounties were paid for high fertility by acceptably white – “Aryan” – women. The fertility rate of Whites in Europe, in the U.S.A., in South Africa, and in Israel with its captive and concentration-encamped Palestine, is the lowest of all ethnicities/races. Generally speaking, the poorer and darker people are, and the closer to the equator they live or come from, the more children they are likely to have produced and/or have in their families. There is a worldwide darkening of the complexion of humanity underway.

Were there not immigration into the wealthy and comfortable Northern European nations, which we used to think of as “pure white,” they would be losing population in coming decades, if not already. There is a direct INVERSE correlation between an ethnic/racial segment of a national population having greater educational attainment and financial security with a higher standard of living (a higher level of their nation’s Human Development Index, as tallied by the U.N.), with respect to their fertility rate. That is why Whites have the lowest fertility rate as compared with darker and poorer people.

The education and emancipation of poor Third World women – teaching them to read, and giving them means of gaining independent income – are the best ways to reduce runaway fertility and stabilize “overpopulation.” Demographic economists calculate that a stabilized world population of 2 to 4 billion people could live with comfortable standards of living in a stable world economy of much greater equality, and which was in balance with Nature; at present there are over 7.7 billion people on our planet. (The idea of reducing world population by 50% or more in 3 to 4 generations, is contentious and involved, and reserved for another essay in the future — maybe.)

So, Northern Europe, the U.S.A. and other wealthy White enclaves are seeing their share of the population drop, proportionally in their nations. This is due to higher competing fertility more so than by unregulated “invasive immigration” by non-whites and foreigners of different type from that of the nativists.

In one sense the Nazi policy was kinder than that of tight-fisted US conservatives today, in that the Nazis provided good maternal medical care nationally to their favored “Aryan” portion of the German population, from 1933 till the war destroyed domestic life in Germany, by 1945.

Jane Elliott’s basic point is that US white supremacist panic about demographic dilution is what lies behind American political anti-abortion. The pseudo-moralistic religiosity camouflage layered over this “pro-life movement” is just to hide its racist foundation. This religious put-on is easily revealed as a fraud by the complete lack of concern by “moral majority” and “tea party” type nativist-racists:

about childhood poverty and malnutrition, and the abandonment by government of poor children to abysmal “education;”

about white nativist enthusiasm for, instead of their repulsion at, the snuffing out of “precious life” by the brisk police execution of black, brown, mentally challenged, and alternatively sexual people disfavored by Bibleist Bigotry, and arbitrarily assigned as athwart the law; and also the favoring of the legalized lynching known as “capital punishment;”

and about hollow Christianity’s utter lack of concern for any real threats to women and girls by good-old-boy Roy Moore type child molesters, and other sexual harassers of women, like Donald Trump and many other men in power, especially if White (or on the Supreme Court) and “conservative.”

This White nativist Bible-thumping Christian (sic) fear of demographic dilution has two components:

1. “White Christians are now a minority of the U.S. population,” at 43% (https://www.pbs.org/newshour/nation/white-christians-now-minority-u-s-population-survey-says), and

2. Between 1950 and 1970, the fractional White population dropped from its highest proportion since 1700 (about 90%) to nearly 88%. The fractional Black population rose from 10% to 11%; and the fractional Hispanic population grew at an accelerating pace — more than doubling — from 2.1% to over 4.4%. During the 40 years between 1970 and 2010, the fractional White population dropped significantly from 88% to 72%. The fractional Black population rose modestly from 11% to 12.6%; and the fractional Hispanic population zoomed from 4.4% to 16.3% (almost quadrupling proportionately). In the year 2000, the fractional Black and fractional Hispanic populations were essentially equal (12.3% and 12.5%, respectively), and subsequently the fractional Hispanic population became larger, and continues growing faster.

The trends shown above are what fuel US white supremacy, both in sentiment and in political action. The growth of the US Hispanic population is driven overwhelmingly by a higher fertility rate, less so by immigration. White people, worldwide, are the richest “racial” population, and they have the lowest fertility rate (more money, less kids). “Darker” and poorer populations have higher fertility rates.

Trumpism (which includes anti-abortionism for white people too), the Israeli occupation of Palestine, and the former apartheid by and for white South Africa were/are wars against demographic dilution, perpetrated by the wealthy white low ‘fertiles’ (WWLFs) against poor dark high ‘fertiles’, (PDHFs). These “heart of whiteness” wars against demographic dilution are also wars for exclusionary capital hoarding (“race capitalism”).

Also, these wars are the echoes of the slave-owning White fears of the 17th through 19th centuries (over slave revolts), and the fears by the European imperialism of the 18th through 20th centuries (enacted through colonial wars). There is tremendous resistance among the world’s people to tolerate each other and share the Earth, for doing so would tumble capitalism, authoritarianism, patriarchy and religion.

While there is certainly a strong component of a “war on women” in anti-abortionism, to cover for chauvinist male insecurity that seeks idiotic reassurance by possessing and dominating women, the deeper wellspring of American anti-abortionism is the White supremacist fear of demographic dilution.

<><><><><><><>

Also at Counter Punch:

Abortion: White Panic Over Demographic Dilution?
20 May 2019
https://www.counterpunch.org/2019/05/20/abortion-white-panic-over-demographic-dilution/

<><><><><><><>

CORRECTION:

I was mistaken to say 1.6M abortions/year are performed in the U.S. The actual number is hard to pin down; from several sources I find that abortions/year reported to the CDC amount to about 650,000 in recent years, BUT not all states report abortions within their state to the CDC, California and Florida (high abortion states) being among them, and the unreported (to the CDC) number is about 180,000+. So, accounting for that, one site claims “the estimated number of U.S. abortions in 2015 closer to 826,199.” The wikipedia article on abortion states “1.1 million in 2011.” So it seems the actual number is in the range of 800,000 to 900,000.

<><><><><><><>

Paradise Rejected

<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>

Paradise Rejected.

History, if it continues to exist beyond the mid 21st century, will record the society of the United States of America as the most idiotic that ever existed on the face of the Earth. Having achieved the pinnacle of wealth, physical power, knowledge and technological advancement of any society during the entire course of humanity’s existence, it nevertheless managed to miserably and abysmally fail to use its unparalleled capabilities to ensure lives of physical, economic and medical security for all its people, as well as liberation for them from unnecessary work – and most work today is unnecessary.

Also, the society of the United States of America has failed miserably and abysmally to use its unparalleled capabilities to effectively and unselfishly assist the other 95% of humanity to eliminate poverty, eradicate curable diseases, dampen conflicts and quell wars, and in partnership with that “rest of humanity” to expeditiously raise the standard of living of the least advantaged and most vulnerable of this world’s people.

The incredible stupidity of myopic ultra-capitalist greed, and the obdurate stupidity of the ultra-egotistical, navel-gazing, bigoted, racist, willfully ignorant self-absorption of too many (I think most) of the American people will ultimately spell out the epitaph of what we now call the American Civilization.

It is true that much of humanity outside the United States of America shares these failings, but all of their societies, even in combination, lack the magnitude of capabilities that the United States possesses, and which could be put to authentically good uses.

If archeologists from alien worlds or future Earthly life-forms ever decipher the history of the United States and of humanity from their dead remains, they will no doubt conclude that the extinction of the United States was inevitable and well-deserved on the basis of its behavior. Those archeologists might also conclude the same about humanity as a whole if it had escaped destruction as a result of the American collapse, and yet had not overcome the same failings that doomed American Civilization.

What is most infuriating about all this is that such a sad degeneration and painful extinction need not happen at all. It is entirely in our power right now to think right and act right to literally make an Earthly Paradise of both the United States of America, and even the World.

What I have learned about people is that there is always an infinite reservoir of excuses for insuring inaction, and for continuing with conditions of abject stupidity and unconscionable cruelty.

My Biggest Mistake.

My biggest mistake is to place what turn out to be too high and unrealistic expectations on other people, and then being disappointed when they fail to meet them.

When I try to compensate for this error by assuming the worst about people I don’t know, and interacting as little as possible with others, I am accused of being negative, unsociable, grouchy, and unfair. If I respond to this criticism by being more positive, sociable, not grouchy, and fair, then I find that I fall back into my original and most frustrating error. In an effort to avoid this nauseating oscillation, I try to dampen my enthusiasm (which kills the spirit) and moderate my disgust (which insults intelligence), by being reserved – not extroverted – and saying as little as possible to others, especially when it comes to being truthful about them and their preoccupations.

People believe what they want to believe, and it is nothing but trouble to contradict them. Almost always it is an illusion to think you can help others by contradicting what you know are their mistaken ideas. What is frustrating about keeping your unwanted counsel is watching the everything all around you needlessly degenerate.

Even knowing that you yourself have your own preferred illusions, it remains disheartening to feel you are living as the sole sane individual in an insane asylum – The Cabinet of Doctor Caligari – or the sole hairless speaking ape on the Planet of the Apes.

As I sit here, looking out onto a beautiful scene of glorious early fall sunshine illuminating crystal clear air, and the radiant greenery of forested hillsides, with Stellar Jays squawking as they scavenge for Hummingbird eggs, remnants of fresh cat kills, and other morsels of protein; and of the many Hummingbirds clicking and twittering around my head as they drill through the air and swoop in to lap up the sugar water I put into feeders for them, I think of how slowly the elegant and amoral natural world and its animal life-forms evolves, and of how far these animals are from developing a civilization. And yet, compared to us humans, these animals are incapable of degenerating as precipitously as we have so abundantly shown we are prepared to do.

Bleed Patriotically For America’s Gun Masturbation.

The NRA is lobbying Congress for a state funeral for Stephen Paddock (look him up if you don’t know) as a patriotic ritual of celebrating the 2nd Amendment, which is the Holy Sacrament of the United States of America.

Gun Clutchers are obsessive-compulsive sociopaths whose sacred right to kill must be protected by whatever degree of human and animal sacrifice is required. It is the patriotic duty of all Americans (humans and animals) to accept being personally sacrificed (or have their children and family members sacrificed) to uphold the sacrament of the 2nd Amendment. Don’t cry, instead bleed patriotically for the freedom of American gun masturbation.

<><><><><><><>

Climate Change, Life, Green Energy

(You can download the above JPEG image, for easy reference.)

>>> Earth will survive Climate Change, humanity may not. <<<

<><><><><><><><><><><><><>
<> MG,Jr. on Climate Change  <>
<><><><><><><><><><><><><>

In response to questions like: How do we know? See:
Climate and Carbon, Consensus and Contention
4 June 2007
http://www.dissidentvoice.org/2007/06/climate-and-carbon-consensus-and-contention/

In response to questions like: How do we know? See “Addendum” (at bottom of):
How Dangerous is Climate Change?, How Much Time Do We Have?
5 December 2015
https://manuelgarciajr.com/2015/12/05/how-dangerous-is-climate-change-how-much-time-do-we-have/

In response to questions like: Is it even a major threat? See:
How Dangerous is Climate Change?, How Much Time Do We Have?
5 December 2015
https://manuelgarciajr.com/2015/12/05/how-dangerous-is-climate-change-how-much-time-do-we-have/

In response to questions like: Exactly how do we cause global warming? See:
Closing the Cycle: Energy and Climate Change
25 January 2014
https://manuelgarciajr.com/2014/01/25/closing-the-cycle-energy-and-climate-change/

<><><><><><><><><><><><><><><><><><>
Life, From the Big Bang to the Climate Change Era:
Outline History of Life and Human Evolution
29 January 2017
https://manuelgarciajr.com/2017/01/29/outline-history-of-life-and-human-evolution/

<><><><><><><><><><><><><><>
<>  MG,Jr. on Renewable Energy <>
<><><><><><><><><><><><><><>

Of all the articles I have ever written, the one I most wish had gotten wide attention and actually affected public thinking and action, is linked below.
Energy for Society in Balance with Nature
8 June 2015
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

Renewable Energy (and war and peace):
Green Energy versus The Uncivil War
18 April 2017
https://manuelgarciajr.com/2017/04/18/green-energy-versus-the-uncivil-war/

<><><><><><><><><><><><><><><><><>

Green Energy versus The Uncivil War

Chris Hedges hosted the political writers Max Blumenthal and Ben Norton on his television program (yesterday, on the RT network/channel) for a discussion of the Syrian War, and its many current harmful impacts, as well as its possible grave future consequences for the Middle East, Europe, the United States, and the world. (That episode of Chris Hedges’ program is linked near the bottom.)

My reaction to that program follows.

The problem, as presented so compellingly by Chris Hedges, Max Blumenthal and Ben Norton, is of such large scope that it is difficult to see how any one nation – even the United States – could act alone to “solve it” (forever).

However, the recommendation that the U.S. stop funding destabilization groups in the Middle East (and everywhere), and that the U.S. “pull back” from or “pull out” of the Middle East, would be a very, very helpful step for the reduction of suffering in that region: for example reducing the incidence of wars and the displacements causing huge refugee streams. Such a change in US policy would also benefit the American people by freeing public money now absorbed by covert and overt militarism, to be used instead for much more domestic socialism (like Medicare-for-all, and free college for all).

However, even were such a change in US Middle East policy to occur, there would still be many evils in the region:
– authoritarian and oppressive regimes continuing to hurt the people under them,
– the export of Wahhabism from Saudi Arabia and Qatar,
– the regional Sunni-Shia proxy wars (basically, Saudi Arabia vs. Iran),
– the war by Israel against the Palestinians (who include Muslims and Christians),
– Israel’s agitation against Syria (for regime change, and to keep the Golan Heights),
– Israel’s agitation against Iran (which helps prop up Hezbollah in Lebanon),
– Israel’s agitation includes its own covert and overt military actions, as well as lobbying for the United States to make war against Israel’s designated enemies.

As an engineer without expertise on the Middle Eastern affairs, I have believed since 1973 that the best long-term plan for the U.S. to insulate itself from Middle Eastern turmoil would have been to use the U.S.’s vast fossil fuel resources (and even the nuclear ones) as a stop-gap energy source to power the building of a national solar (“green”) energy collection and distribution system.

That national green energy system would be made of many local solar energy networks interconnected into regional systems, which in turn would be interconnected into a national system. The local power sources would include:
– direct solar-collection to electrical-output arrays (solar panels),
– solar heat collection for boilers that power steam turbines cranking electric generators,
– river hydroelectric (the dams we already have),
– ocean-tidal hydroelectric,
– land-based wind-electric,
– offshore wind-electric,
– a few sites for solar-powered desalination for potable water,
– and solar-powered hydrogen recovery from water for H2-O2 fuel-cell propulsion for civilian aircraft, and road and rail transit.

Given real energy independence, the Unites States could stop funding and supporting Saudi Arabia and Israel (arming them to the teeth so extravagantly). I realize that defunding Israel would be harder to do regardless of circumstances, because of the metastasis of the Israel Lobby within the US body politic. But, if the U.S. could shut off its massive dollar streams currently paying for Middle East petroleum (and bribes to Egypt and Jordan to not annoy expansionist Israel), then many of the Middle East oppressor regimes would be weakened and likely overthrown by more popular and democratic alternatives, and the U.S. would be immune from blackmail by oil embargoes.

Also, a green national energy system for the U.S., replacing the 19th and 20th century fossil and fissile fuel system still in use, would offer a long term, sustainable and low-(no?)-pollution energy-flow for domestic consumption: it would not accelerate climate change.

Obviously, myopic greed such as by fossil and fissile fuel companies opposes such a strategy as they prefer to make private capital gains by extractive exploitation of Nature, and by setting off “pipeline wars” at public expense. The green energy vision and strategy described here is at its core socialist (it is best for the US commons), and it is also internationalist without being belligerent and interventionist, because by sharing such green energy technology internationally the U.S. would help boost the standard of living globally: the human development index (HDI) would increase everywhere, and poverty would decrease everywhere.

The Uncivil War, with Max Blumenthal & Ben Norton
CHRIS HEDGES
16 April 2017
https://www.rt.com/shows/on-contact/384914-uncivil-war-blumenthal-norton/

or, on YouTube:

Of all the articles I have ever written, the one I most wish had gotten wide attention and actually affected public thinking and action, is linked below.

Energy for Society in Balance with Nature
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

<><><><><><><>

Energy for Society in Balance with Nature

“Solar power at 1% conversion efficiency on 2% of the land area of the United States of America would produce the total electrical energy use of the nation, 4 trillion kilowatt-hours per year (4T kWh/y).”

<><><><><><><><><><><><><><><><>

<> The Economic Function Of Energy <>

<><><><><><><><><><><><><><><><>

Economics is the consumption of energy to process matter and produce action for the maintenance and renovation of society. Just as form follows function, the right choice of an energy technology for any society is a function of its economic model and socio-economic goals. Politics is the process of determining the allocation of costs and the distribution of benefits for an economy. Therefore, the selection of the energy technologies to power a society is based on political consensus and political power.

Industrialization is a synchronized and mechanized form of economics. For example, suburbia and exurbia are industrializations of the concepts of village, town, and city. They are the stretching of human settlements into 2D space with a compensatory time contraction provided by an energy-intensive kinetic network of unitary transport vehicles.

Public debates on the influence of industrialization on the global heat balance (the average temperature of much of the biosphere), and the sensitivity of climate change to inputs of industrial waste heat and waste matter (e.g., CO2, methane, soot), are political debates on economic forms couched in terms of the relative convenience, profitability and environmental impact of different energy technologies.

Energy For Human Development

The United Nations uses an economic parameter called the Human Development Index (HDI) to characterize the typical standard of living of every nation. It is observed that affluent nations have high HDI scores (HDI ranges from 0 to 1) and a high use of electrical energy per year per person (in kilowatt-hours/year/person the range is from 0 to 30,000), while poor nations have relatively low values for both quantities. (1)

Data from 2005 include the following:

1. The range of annual per capita electrical energy use among 177 nations was between 40 kWh/year/person and 29,247 kWh/year/person. The range of HDI was from 0.281 to 0.963.

2. The United States of America ranked 10th in HDI, at 0.944, with 13,456 kWh/y/p for 4.5% of the world’s population, which produced 24.4% of the CO2 emissions from human activity.

3. The People’s Republic of China ranked 85th in HDI, at 0.755, with 1,484 kWh/y/p for 21% of the world’s population, which produced 12.1% of the CO2 emissions from human activity.

China is racing to develop, and a momentary digression is necessary on account of its rapidly changing data. Between 2004 and 2009, China’s primary energy use grew by 40%, electricity use by 70%, energy imports by a factor of three, population by 2.7%, and CO2 emissions by 44%. (2) After 2007, China’s CO2 emissions exceeded those of the United States (though per capita emission remains far below the US level). Between 2008 and 2010, world CO2 emissions rose 12.1%, US CO2 emissions by only 0.57% because of the economic slowdown during 2009, and Chinese CO2 emissions rose by 17.2%. In 2010, China’s CO2 emissions were 24.6% of the world total, and the US share was 16.4%. (3)

The United Nations calls the striving of each nation to elevate the standard of living of its population its economic development, and a fundamental part of such development is a greater availability of electrical power.

We can visualize the sequential stages of economic development as an HDI climb up an energy ladder. People who burn matter to generate heat, and have a pre-industrial society, advance their economic development by shifting to fuels of higher chemical energy content: from crop waste and dung, to wood, charcoal, kerosene, liquefied petroleum gas, and then ethanol and methanol.

The higher stages of economic development are those experienced over the last two centuries by the now highly industrialized nations. Coal was the fuel of 19th century industrialization. Oil and natural gas are the fuels of rapid mass mobility and heating, and power the hyper-animated form of industrial society we know simply as “the 20th century.” Civilian nuclear power became available near the middle of that century, and remains our most concentrated source of energy for producing electricity.

In 2005, the world average HDI was 0.741, and the world average electrical energy use was 2,465 kWh/y/p. People whose lives are characterized by the low end of the HDI scale (near 0.3) can be said to remain, for the most part, in the 18th century. Those in mid-range HDI conditions (0.5-0.6) experience 19th to early 20th century living with some sprinkles of the 21st century, perhaps occasional encounters with consumer electronics like cellular telephones, or militarized police with all too modern automatic guns. Nations with HDI near the world average (0.7-0.8) are clearly modern, though they will still experience many austerities. The plateau of affluence is defined by those nations with HDI above 0.9, and energy use above 6,000 kWh/y/p.

The different levels of economic development existing today mean that no single strategy for advancement is appropriate worldwide, even though it is clear that every national strategy for development must include an effort to improve the reliable availability of energy broadly.

Several nations in the affluence plateau, like Germany, are seeking to make a transition to a post-nuclear, post-fossil fuel economy without a loss of HDI. Energy sources being explored include: solar (photovoltaic and thermal), wind, ocean (wave and tidal), hydroelectric (river power), biomass (agriculture for fuel), and conservation, perhaps the richest though least popular source.

Nations that are industrializing now, like China, and are heavily reliant on coal and oil, could decide to skip the atomic age of mid-20th century America and Europe, and leap-frog to a post-nuclear, post-fossil fuel and ultimately high HDI economy by the middle to late 21st century. A recent report in Spiegel Online International notes: “In 2004, Germany held a 69 percent share of the global solar panel business. By 2011, it had declined to 20 percent” because “Chinese competitors offer systems of equivalent quality at significantly lower prices.” (4)

Nations that remain largely pre-industrial and struggle to meet the basic needs of their people, as outlined by the UN’s Millennium Development Goals (MDG), (5) might conclude that duplicating the 19th and 20th century developmental path of America and Europe is just not possible today, nor conscionable since the raising of their people’s HDI cannot wait two centuries. They might decide to leap-frog from the 18th to 21st centuries, bypassing the intense industrialization of the coal through nuclear economies, and instead invest in the low capital development of many local sources of renewable energy, which would be distributed near its generation sites through low-power micro grids. Such a ubiquitous, frugal, renewable-source and essentially “gridless” power system is in contrast to the concept of a few capital-intensive technologically complex and large coal, oil and nuclear power plants feeding electricity through massive regional and long-distance transmission line systems, to eventually fan out to each particular home. Just getting enough electricity to illuminate homes (enabling reading and study at night) and to power simple machines like water pumps and refrigerators (and hand tools, and perhaps even recharge cellular telephones) everywhere in a currently low HDI nation would be a revolutionary improvement.

At this point we can pose a multitude of questions with one simple query: what are the best energy technologies to power our economy into the future?

Energy Choices For An Uncertain Future

Consider the selection of energy technologies to be: renewables (R), coal (C), oil and natural gas (O), and nuclear (N). Under renewables we group the technologies that harvest energy without resorting to burning (solar, wind, ocean, hydroelectric, geothermal and conservation), and may include some biomass schemes, like methane-generating digesters of farm, household, and municipal wastes, despite the fact that they produce a fuel for burning, which produces carbon dioxide gas. Under renewables, we exclude schemes for the industrial scale agriculture of crops intended to be processed into liquid fuels and methane; this is just the depletion of soil that could be producing food to instead fuel automobiles, farmed oil.

If we think of economic development as a process of concentrating technological complexity and capital for the purposes of improving a society’s well being, then the right fuel to power that society is one whose degree of energy concentration is compatible with the technological concentration of the society. Here, we are referring as much to E. F. Schumacher’s concept of “appropriate technology” as to the earlier description of the energy ladder. (6)

Forms Of Energy In Our Quests For Power

The appropriate choice of an energy technology for any given society will usually be some mixture of the major technologies, labeled here as R, C, O, and N. Let us identify the major attraction of each of our four technologies as follows:

R: achieve MDG, power to end poverty (social power).

C: commercial power.

O: military power.

N: political power.

Renewables can be deployed locally with little capital and are thus the first choice for moving pre-industrial people out of poverty and into the upper half of the HDI range, which corresponds to lives in humane and secure conditions that Americans and Europeans would see as elementary 20th century life.

Coal is abundant, it can fuel the great furnaces of heavy industry, and it can provide the heat to generate electricity for billions of people. This is why China burns so much coal, and why also America and Europe continue to use it. Coal is the fuel of commercial power gained through heavy industrialization, a 19th and early 20th century technique of development that is perfectly suited to countries whose typical experience of life is of a comparable time, and who have much greater ambitions.

Oil is the “liquid gold” that is refined into the fuels that make the automobile culture, the airline industry, and the highly mobile global reach of the United States military possible. The many large, heavy, complex, low-mileage, high-power vehicles of the US military could not exist without jet fuels, high-octane gasoline, diesel fuel, and fuel oil; the Air Force would be grounded, the Navy tied up at port, and the Army reduced to marching or horse-drawn wagons, since their trucks, tanks, and helicopters would be immobilized.

Civilian America could probably live quite well with only renewable energy, but it would be impossible to maintain today’s military capabilities without petroleum-based fuels. Renewables are low concentration technologies, they require large collection areas, and are completely unsuited to military mobility. If very high energy density batteries were available, perhaps the US military could maintain solar energy farms (probably all of Arizona), that constantly charged them up, to power its electrified vehicles. However, electric battery technology has not achieved anything near the energy concentration of liquid hydrocarbon fuels. Electric cars remain rare because their batteries take up more space than the gas tank, which they are far heavier than, and they provide less range before being exhausted and requiring a lengthy recharge.

Nuclear reactors can power large ships like aircraft carriers and ballistic missile submarines, as well as large static bases, but are far too cumbersome for most military tasks. Coal can be liquefied into a fuel (producing more CO2 than the extraction of crude oil and its refinement to liquid fuels) and is probably what the US military would turn to in the event that petroleum ceased being available.

The many liabilities of nuclear power are well known, and today are being highlighted by the Fukushima disaster. But, nuclear power always has one irresistible draw: it is the source of nuclear weapons. The fascination here is entirely that of political power, the belief that in possessing nuclear weapons one possesses the ability to make the ultimate threat: to obliterate an enemy. What is often forgotten is that in order to carry out the threat one needs a reliable and accurate delivery system, usually missiles. As more nations acquire nuclear weapons and missile systems, another consideration becomes the ability to survive retaliation. As purely war-fighting tools, nuclear weapons have become obsolete because Global Positioning Satellite (GPS) guided chemical high explosives conveyed by missiles and drone aircraft can destroy targets with an accuracy of meters, eliminating the need for large-area blasts to compensate for the targeting inaccuracy of unguided gravity bombs and ballistic missiles. However, possession of nuclear weapons certainly gets their keeper the attention of other nations.

A Simple Model Of Energy Choices

So, the first method we might try for prioritizing a society’s investments in energy technologies would be to rank the four types of power the decision-makers might want (political, military, commercial, to end poverty), and then by the corresponding code letters shown earlier, we arrive at a preference ranking of energy choices. We might guess at the following two examples, and then compare them to reality:

United States:
military, commercial, political, social; (O, C, N, R).

China:
commercial, social, military, political; (C, R, O, N).

In 2009, the United States produced 37% of its energy from petroleum, 25% from natural gas, 21% from coal, 9% from nuclear power, and 8% from renewables, the bulk of which was hydroelectric. Grouping petroleum and natural gas together, these portions become: O at 62%, C at 21%, N at 9%, and R at 8%. (7)

In 2005, China produced 81% of its electricity from coal-fired plants (C), 17% was hydroelectric (R), and 2% from nuclear power (N). Petroleum is refined for the liquid fuels used for transportation. China is the world’s leading producer of renewable energy, the bulk of which is hydroelectric. With an eye to the future, China is also the largest producer of wind turbines, solar panels and solar water heaters. At the UN climate summit in 2009, China pledged to have 15% of its energy generated from solar power within a decade. (8)

An Improved Model Of Energy Choices

The previous type of analysis is too simple — we want greater insight into the politics of energy. Decision making in most countries is a blending of competitive interests, how do we account for the many possibilities of this? My response was to devise a detailed model based on the decision theory of Richard C. Jeffrey. Decision theory combines ideas from statistics, probability theory, and logic, and is the result of work by philosophers, mathematicians, economists, and logicians. (9)

The essential points of my improved model are as follows. The agent making the decisions about national investments in energy technologies is assumed to be a composite of several characters. Each of these characters represents a major constituency or interest as regards national energy policy. I considered three single-minded characters: “no nuclear,” “stop global warming,” and “maximum energy now.” The deciding agent is a weighted sum of these three characters. For example, if all three characters had equal political power, then the agent’s preferences would be an equal blending of “no nuclear,” “stop global warming,” and “max energy now.” If the portions of political power for the three characters happened to be 1/7 for “no nuclear,” 4/7 for “stop global warming,” and 2/7 for “max energy now,” then the preferences of the deciding agent would be a composite of the single-minded preferences in these same proportions. Five case studies, each with a different set of political weights, were calculated from the model and are described below.

When the deciding agent is entirely the single-minded character “stop global warming,” the ranking of investment choices is R, N, O, C (renewables, nuclear, oil and gas, coal). Clearly, this character holds off on burning as much as possible, and only reluctantly agrees to it when there is no other source of energy. Notice that a single-minded concern for global warming leads to a preference for nuclear power over combustion power.

A deciding agent that is equally split between “no nuclear” and “max energy now” (and does not care about global warming) is most likely to rank investment choices as C, O, R, N. The numerical results show that this agent is equally comfortable choosing coal or oil, so the ranking could just as easily be O, C, R, N. If this deciding agent had less of the “no nuclear” character, so that its preference ranking placed R last, then this agent would mirror the actual character the US energy mix: O, C, N, R.

A deciding agent that is equally split between “stop global warming” and “max energy now” (and does not care about avoiding nuclear) is most likely to rank investment choices as R, C, and then N and O equally. The numerical results show that the single most preferred technology is coal, but the concern over global warming boosts the incentive to invest in renewables. If this deciding agent had less “stop global warming” character, so that C was first in its ranking of investment choices, then this agent would mirror the actual character of the Chinese energy mix: C, R, N, for the generation of electricity (O is used for transportation fuels).

A deciding agent that is equally split three ways between “no nuclear,” “stop global warming,” and “max energy now” is most likely to rank investment choices as not-N, R, O, C. This agent’s first priority is to stop, end, and prevent funding for nuclear power. The next priorities are positive investments in energy sources, ranked as R, O, C.

Because of its natural preference for nuclear power, the “stop global warming” character is directly opposed to the “no nuclear” character. A deciding agent that is one part “no nuclear” and two parts “stop global warming” (and has none of the “max energy now” character) will most likely rank investment choices as R, N, O, C. This is the same ranking as that of a single-minded “stop global warming” agent. However, because there is a minor portion of the agent with the “no nuclear” character, another ranking that is nearly as probable is R, O, N, C.

While it is possible to elaborate models of this type into systems of great complexity to capture many types of opinions on energy policy and their relative political weights, and to use computers to calculate projections on the possible directions of a society’s energy politics, I think it’s better to keep the models reasonably simple and to use them as guides that help the mind organize the information from which decisions are to be drawn, and then to bring out the most important points. John von Neumann (1903-1957) said: “The purpose of computation is insight, not numbers.”

International Energy Politics

Based on what has been presented up to this point, we can propose the following as six points of probable conflict [1-6].

High HDI environmentalists, whose major concerns are the consequences of global warming (R, N, O, C), are:

[1] at odds domestically with their military and commercial sectors (O, C, N, R), which are interested in immediate power and profits,

[2] at odds with high HDI anti-capitalists, whose major concerns are political opposition to war, nuclear weapons, and nuclear power (R, O, C, N).

Low HDI economic developers, whose major concern is the immediate raising of living standards (C, R, O, N), find themselves:

[3] at odds with high HDI environmentalists on the issue of economic development (coal),

[4] they find high HDI anti-capitalists disinterested in low HDI economic development (interest is opposition to high HDI power),

[5] they find high HDI commercial sectors competitive with and thus hostile to their industrialization.

Low HDI economic developers are aware of and concerned about global warming, which is why they seek to develop R technology (C, R, O, N).

[6] They find themselves at odds with high HDI commercial sectors, who are disinterested to pay the cost of reducing their CO2 emissions (O, C, N, R), or of developing R technology suitable to low HDI conditions.

If we imagine that each of these conflicts is a simplified reflection of reality, then it is easy to see why the 2011 UN Convention on Climate Change, in Durban, South Africa, resulted in setting to 2015 the completion of an international agreement to limit carbon emissions, and waiting till 2020 for that agreement to take effect.

Now for a change of focus. Instead of trying to answer how societal choices on energy have been and will be made, we give free rein to realistic imagination and ask: what could we do to produce and use energy if there were no political barriers?

The Energy Systems Of Two Imaginary Futures

Let us sweep away all the conceptual restraints placed on the imagination by the fractious politics and societal indecision of our times, and instead visualize energy systems that are physically possible, to power economies that feed some subset of enduring human desires.

US National Solar Electricity System

Solar power at 1% conversion efficiency on 2% of the land area of the United States of America would produce the total electrical energy use of the nation, 4 trillion kilowatt-hours per year (4T kWh/y).

We could imagine a single site in the American southwest that was a square with sides 427 km (265 miles) long; or 100 sites of 43 km (26 mi) square sides; or 1000 sites of 14 km (8.4 mi) square sides. If the conversion efficiency of sunlight to electricity is increased to 10%, then only 18,232 square km (7040 sq. mi) of collection area are needed; this could be one site of 135 km (84 mi) square sides. The combined land areas of the White Sands Missile Range, Fort Hood Texas, Yuma Proving Grounds and Twentynine Palms Base is 18,435 square km (7118 sq. mi); imagine them being used to host a national (publicly owned) solar electricity system, US NSES.

The conversion efficiency of solar (photovoltaic) cells varies with type, age, and conditions, the extreme range being 2% to 43%, where efficiencies beyond about 20% are for specialized devices in research laboratories. One expects 15% to 19% efficiency of solar cells in the field. (10)

Solar-thermal systems convert sunlight to heat, and are of many different types. (11) A solar-thermal-electric system captures sunlight as heat in a transfer fluid (synthetic oil, pressurized steam, molten salt), which is used to generate steam that powers conventional turbine-generators of electricity. One such system, Nevada Solar One, nominally produces 64 MW of electricity from a collection area of 1.2 square km (300 acres), an efficiency of 5.3%. (12)

With a combination of photovoltaic and solar-thermal-electric systems, the United States could use 18,400 square km (7,100 sq. mi) of publicly owned land (converted military bases) to provide 4T kWh/y of socialized electricity, converted from sunlight with 10% efficiency (sunlight at 1000 Watts per square meter is assumed for only 25% of the time to account for nights and cloudy days).

The obvious difficulties with solar energy are nighttime, clouds, and dust on the reflectors or their glass covers. A solar power system can supply electricity steadily if it is paired with an energy storage system that is filled during daylight hours, and discharged during darkness. We could imagine half the electricity generated during daylight being stored for use at night.

The form of storage could be electrical, in batteries, or mechanical, as the spinning masses of large flywheels, or gravitational, as the pumping of water into elevated tanks or uphill reservoirs. At night, the batteries would be discharged, the flywheels spin down by rotating the shafts of electric generators, and the pumped storage recovered hydroelectrically. We can imagine the US NSES pumping water into Lake Mead (Nevada) during the day, for hydroelectric recovery at Hoover Dam during dark times.

As for the dust, it seems we will always need people to clean windows.

Carbon Neutral Free Market Economy

Americans reached a four-fold consensus: carbon emissions must be reduced drastically, it was absolutely essential that anyone be able to own a 13 mile-per-gallon two ton, four wheel drive SUV (a truck-based automobile), the US military required enough fuel to move all its vehicles all the time, and civilian nuclear power was acceptable if the reactors were well sealed, and the radioactive wastes were moved permanently offshore.

The Athabasca Oil Sands of Alberta, Canada, (13) a vast sludgy deposit of mixed crude bitumen, sand, clay, and water, with a viscosity like cold molasses, is strip mined and softened by high temperature steam into a pressurized oily slurry that is piped to US synthetic fuel plants along the Canadian border. The large amount of viscosity-reducing heat needed along the entire length of the pipeline is supplied by electric heaters, which are powered from Canadian nuclear reactors dedicated to this purpose.

The large amounts of carbon dioxide gas released by the production of synthetic gasoline is contained at the synfuels plants and piped to the National Carbon Sequestration Portal, by the Pacific Ocean at the Oregon coast. This site has large underground tanks for the temporary storage of pressurized CO2, and its own nuclear power plant, which generates the energy needed for pumping CO2 into the National Carbon Sequestration Site at the Juan de Fuca tectonic plate.

The CO2 is pumped offshore 300 km (186 mi) and down into undersea basalt below a depth of 2,700 m (8900 ft), where it reacts to form stable carbonate minerals. (14) That these accumulating carbonate deposits may lead to an acidification of the local oceanic environment, and adversely affect marine life, is not seen as likely by the designers of this scheme.

Coal is still mined in the U.S., but it is all processed into synthetic liquid fuels for civilian and military transport. Electricity is generated primarily from nuclear power, with a small portion being hydroelectric. To compensate for the loss of coal as a fuel for producing industrial process heat (blast furnaces and such) a much larger quantity of electricity is generated than in the past, to provide industrial heat electrically.

The nation’s 531 nuclear reactors (up from 104 in 2008) are now of a new modular design. When the reactor core has been used up, the control rods are fully inserted into it, the containment vessel is filled with coolant and sealed, and the entire assembly is removed for disposal; a fresh replacement is installed. The spent sealed vessels are shipped to the National Nuclear Embarkation Facility in South Carolina. These sealed vessels, called “plugs,” are carried by specialized container ships to sites along the Mid-Atlantic Bathymetric Disposal Line. This line runs along the ocean floor about 4,000 meters below the surface, parallel and to the west of the rift valley in the middle of the tectonic spreading zone known as the Mid-Atlantic Ridge.

The plugs are unloaded through the bottom of the container ship’s hull, and guided by robotic submersibles to prepared emplacement holes, which have been drilled into the ocean floor. The rate of tectonic spreading is about 2.5 cm (1 in) a year, so the Mid-Atlantic Bathymetric Disposal Line moves west, along with the rest of North America, at a rate of 25 km (15.5 mi) every million years.

By these means, Americans are able to continue with their preference for luxury truck-like road vehicles, suburban sprawl, air travel, and a high HDI lifestyle, without increasing the carbon emissions of the nation. However, these emissions remain high on a per capita basis, and global warming continues.

Parting Thoughts And A Fantasy

Life is effort, and effort is energy in use. As a society, the types of energy we use and seek to acquire are reflections of who we are. Our political conflicts are like the squabbles of scavengers assembled around a fallen carcass on the Serengeti Plain, and they have their echoes as conflicts over national and international energy policy. Regardless of whether we choose to tear our earth apart by competitive selfishness, or to nurture it communally, we will have to do a great deal of work to maintain reliable cycles of energy use that sustain our many nations. I believe that working cooperatively releases more energy for improving the HDI for everybody.

An African Fantasy

The Sahara Solar Energy Consortium includes the countries Algeria, Chad, Egypt, Eritrea, Libya, Mali, Mauritania, Morocco, Niger, Sudan, Tunisia, and Western Sahara. With technical experts from Germany and Spain, and armies of workers from the host countries, the SSEC has built many solar energy farms across the Sahara, transmitting low-cost electrical power to all of Africa, and easily paying for itself (and the African development it enables) by exporting electrical power to Europe via the undersea Trans-Mediterranean Conduit. The SSEC is the world’s leading supplier of hydrogen gas produced by the electrolysis of water. Hydrogen gas is used to power fuel cells used as back-up generators of SSEC electricity. A hydrogen fuel cell is a device that converts the heat released by oxidizing hydrogen (burning it into steam) into electricity. (15) The steam is captured for reuse, naturally.

Notes

1.  M. García, Jr., Energy For Human Development, (a series of reports from 2006),
https://manuelgarciajr.com/2011/11/09/energy-for-human-development/

2. “Energy Policy of The People’s Republic of China,”
http://en.wikipedia.org/wiki/Energy_policy_of_China

3. “List of Countries by Carbon Dioxide Emissions,”
http://en.wikipedia.org/wiki/List_of_countries_by_carbon_dioxide_emissions

4.  Alexander Neubacher, “Solar Subsidy Sinkhole: Re-Evaluating Germany’s Blind Faith in the Sun,” Spiegel Online International, 18 January 2012,
http://www.spiegel.de/international/germany/solar-subsidy-sinkhole-re-evaluating-germany-s-blind-faith-in-the-sun-a-809439.html

5. “Millennium Development Goals,” United Nations,
http://www.un.org/millenniumgoals/

6. “E. F. Schumacher” (1911-1977),
http://en.wikipedia.org/wiki/E._F._Schumacher

7. “Energy in The United States,”
http://en.wikipedia.org/wiki/Energy_in_the_United_States

8. “Renewable Energy in The People’s Republic of China,”
http://en.wikipedia.org/wiki/Renewable_energy_in_China

9.  Richard C. Jeffrey, The Logic of Decision, 1965, McGraw-Hill Book Company.

10. “Solar Cell Efficiency,”
http://en.wikipedia.org/wiki/Solar_cell_efficiency

11. “Solar Thermal Energy,”
http://en.wikipedia.org/wiki/Solar_thermal_energy

12. “Nevada Solar One,”
http://en.wikipedia.org/wiki/Nevada_Solar_One

13. “Oil Sands,”
http://en.wikipedia.org/wiki/Oil_sands

14. “Carbon Sequestration,”
http://en.wikipedia.org/wiki/Carbon_sequestration

15. “Fuel Cell,”
http://en.wikipedia.org/wiki/Fuel_cell

<><><><><><><><><><><><><><><><>

Originally published at Swans.com on 27 February 2012
http://www.swans.com/library/art18/mgarci41.html

<><><><><><><><><><><><><><><><>

How “The Economic Function of Energy” came to be written.

As part of my professional technical work in 2006, I devised an improved analytical fit (a curve) to the correlation between national HDI and average electrical energy use per capita, for 177 nations. My employer (Livermore Lab) hoped to use this result in grant applications seeking funds for nuclear energy research, arguing it was a social benefit (this was for the Global Nuclear Energy Partnership, GNEP, a program thankfully now dead). I continued in this job effort by applying the decision theory of Richard C. Jeffrey to devise simple models of how an agent (such as a government policy-making body) might rationally select what type of energy technology to invest in for the best results in raising a nation’s HDI.

Given that raising HDI was my stated goal, and not maximizing profits to a group of speculators (such as corporations), my decision theory models always pointed to renewable energy technologies as better than gas, oil and coal. It is obvious that climate change and environmental improvement or degradation have significant impacts on HDI. So, I combined my technical work on HDI curves and decision theory to justify my recommendation that my employer instead focus on the improvement of solar and renewable energy systems. This was my last project before retiring in 2007. I found much of the data quoted in “The Economic Function of Energy” during 2006-2007.

In 2007, I was urged (by two academics) to write a clear explanation of climate change science, aimed at convincing Alexander Cockburn (1941-2012), the political journalist, and the publisher-editor of Counterpunch (along with Jeffrey St. Clair), that his climate change skepticism was misplaced. That article is

Climate and Carbon, Consensus and Contention
4 June 2007

Climate and Carbon, Consensus and Contention

and it did not change minds one way or the other. Also, it is a very good article.

In 2011, I thought I would write a book on energy and climate change politics based on all I had learned in my investigations into

Energy for Human Development
https://manuelgarciajr.com/2011/11/09/energy-for-human-development/

, HDI, energy policy decision theory models, and climate change science.

In December 2011, I completed an outline for this planned book, and that outline is now published on this blog.

Closing the Cycle: Energy and Climate Change
https://manuelgarciajr.com/2014/01/25/closing-the-cycle-energy-and-climate-change/

Once I had the outline, I realized that my imagined book would be encyclopedic, which is to say impractical for me to write. I decided that the best way to make use of all that I had learned was to write reasonably-sized articles for a general readership, articles that were informative and clear without diluting the technical insights, and which provoked thought (I hoped).

“The Economic Function of Energy” is the result of that focus. It is my favorite of my essays to date, I think it is my best work of synthesis. It won’t change minds one way or the other, but I am very happy I developed to the point where I could and did produce it.

Enjoy!

<><><><><><><>

The Economic Function Of Energy

Consciousness and personality can be seen as individualized expressions of energy coursing through metabolic forms we call human life. Similarly, civilization and culture and economics can be seen as social expressions of energy coursing through the web of interpersonal relationships we call humanity.

The nature of the forms of energy used by a society (a nation, a region, an economic class) are an integral part of its identity. So, to answer “what is the right kind of energy to power society X?” requires first determining what kind of society X is intended to be.

This means that all discussions about “energy policy” are disguised arguments about the structure (or restructuring) of one’s society; politics at its deepest. Nature itself voices an opinion in this argument in the form of climate change, its response to humanity’s century-long ringing endorsement of fossil fuels, expressed as global warming.

Using technical results I arrived at some years ago (https://manuelgarciajr.wordpress.com/2011/11/09/energy-for-human-development/), I explore this theme in some detail in the following article.

The Economic Function Of Energy
27 February 2012
http://www.swans.com/library/art18/mgarci41.html

The best economic function of energy is to improve living conditions in harmony with nature.

I try to show the types of futures we could have, both desirable and undesirable, based on the choices we make as a society about energy technologies to power our industrialized way of life. You will not find another article like this. Enjoy.