Climate Change, Life, Green Energy

(You can download the above JPEG image, for easy reference.)

>>> Earth will survive Climate Change, humanity may not. <<<

<><><><><><><><><><><><><>
<> MG,Jr. on Climate Change  <>
<><><><><><><><><><><><><>

In response to questions like: How do we know? See:
Climate and Carbon, Consensus and Contention
4 June 2007
http://www.dissidentvoice.org/2007/06/climate-and-carbon-consensus-and-contention/

In response to questions like: How do we know? See “Addendum” (at bottom of):
How Dangerous is Climate Change?, How Much Time Do We Have?
5 December 2015
https://manuelgarciajr.com/2015/12/05/how-dangerous-is-climate-change-how-much-time-do-we-have/

In response to questions like: Is it even a major threat? See:
How Dangerous is Climate Change?, How Much Time Do We Have?
5 December 2015
https://manuelgarciajr.com/2015/12/05/how-dangerous-is-climate-change-how-much-time-do-we-have/

In response to questions like: Exactly how do we cause global warming? See:
Closing the Cycle: Energy and Climate Change
25 January 2014
https://manuelgarciajr.com/2014/01/25/closing-the-cycle-energy-and-climate-change/

<><><><><><><><><><><><><><><><><><>
Life, From the Big Bang to the Climate Change Era:
Outline History of Life and Human Evolution
29 January 2017
https://manuelgarciajr.com/2017/01/29/outline-history-of-life-and-human-evolution/

<><><><><><><><><><><><><><>
<>  MG,Jr. on Renewable Energy <>
<><><><><><><><><><><><><><>

Of all the articles I have ever written, the one I most wish had gotten wide attention and actually affected public thinking and action, is linked below.
Energy for Society in Balance with Nature
8 June 2015
https://manuelgarciajr.com/2015/06/08/energy-for-society-in-balance-with-nature/

Renewable Energy (and war and peace):
Green Energy versus The Uncivil War
18 April 2017
https://manuelgarciajr.com/2017/04/18/green-energy-versus-the-uncivil-war/

<><><><><><><><><><><><><><><><><>

Humanity’s Timescale Forward

Guy McPherson says humans will be extinct in 10 years, while Stephen Hawking puts it at 1000 years (they each have PhD’s, but…). What’s your guess? Civilization is likely to collapse before human extinction, when would that be likely? McPherson cites the exponential rise of global average temperature (locked in by intertwined natural processes, and continuously fed by humanity’s obsessive industrialized capitalism), which we can visualize causing crop failures and oxygen depletion (mass starvation) and extreme weather catastrophes (mass displacement), which in turn would cause mass migrations with inevitable conflict (as with 5th century Rome and the Germans, and today with African and Middle Eastern diasporas aiming for Europe, and Central American and Caribbean diasporas aiming for the USA). Hawking cites climate change and the possibilities of nuclear wars and the dispersal of genetically engineered viruses. Hawking believes humanity should prepare to colonize other planets within 1000 years, while McPherson believes people should calmly pursue excellence in what they like doing, and to be loving to all the people near and dear to them, to make the best use of the remaining time before exiting with grace (not a bad plan regardless). What’s your guess about humanity’s prospects and the state of the planet over next 100 years?

HWPTRA (an author whose article is listed below) responds:

“I’ve read Guy McPherson’s work and he tends toward the catastrophic view of the various indicators. Hawking’s estimate of 1000 years I find vanishingly unlikely. Most of the mainstream climate scientists I’ve been reading are generally pointing to 2040 to 2050 as the time of severe conditions making the continuance of human civilization simply untenable with the accompanying deterioration of how people will treat each other. When a man is hungry, morality is largely irrelevant. However, I agree with McPherson’s advice on how to live with the remaining time we collectively have.”

Guy McPherson – Human Extinction within 10 years
25 November 2016
https://youtu.be/zqIt93dDG1M

How to Avoid Stephen Hawking’s Dark Prediction for Humanity
18 November 2016
http://www.livescience.com/56926-stephen-hawking-humanity-extinct-1000-years.html

How Dangerous is Climate Change?, How Much Time Do We Have?
5 December 2015
(by guest author: HWPTRA)
https://manuelgarciajr.com/2015/12/05/how-dangerous-is-climate-change-how-much-time-do-we-have/

How soil carbon loss could accelerate global warming
29 November 2016
https://youtu.be/IrKOpPJIbXA

Global Warming Research in Danger as Trump Appoints Climate Skeptic to NASA Team
1 December 2016
https://theintercept.com/2016/12/01/global-warming-research-in-danger-as-trump-appoints-climate-skeptic-to-nasa-team/

Manuel Garcia, Jr. comment to the above news story:

“It doesn’t really matter. There will always be an excuse, regardless of what faceless suit is momentarily “in charge.” And the people overwhelmingly agree with those excuses because they prefer instant power, individually, to social responsibility. That’s why we are where we are: a runaway warming is all locked in now. It will be crazy in 2040-2050.”

The physics of, and history of human awareness about, Anthropogenic Global Warming:

Closing the Cycle: Energy and Climate Change
MG,Jr.
25 January 2014
https://manuelgarciajr.com/2014/01/25/closing-the-cycle-energy-and-climate-change/

AGW and Malthusian End Times
(by Daniel P. Wirt, M.D., and Manuel García, Jr.)
13 January 2014
https://manuelgarciajr.com/2014/01/13/agw-and-malthusian-end-times/

<><><><><><>

Living Confidently in Times of Climate Change

An old pal of mine, HWPTRA, wrote the article:

How Dangerous is Climate Change?, How Much Time Do We Have?
5 December 2015
https://manuelgarciajr.com/2015/12/05/how-dangerous-is-climate-change-how-much-time-do-we-have/

in which he sought to estimate when human extinction might occur as a result of too-drastic-for-us climate change. To ponder this imponderable, he gathered the best scientifically-based information available about changing climate and environments, and about evolutionary biology and Life-on-Earth.

The resulting article is a fascinating description about Life-on-Earth over “deep time,” and about the many geophysical (climate related) processes and phenomena that have suddenly (within the last century or so) lurched into rapid transitions to very different and as yet unknown new conditions of stability. The problematic uncertainty for humanity is that the eventual climatic “new stability” may mean a world uninhabitable by our kind.

So much for the facts, now what do we — individually — do about them? That question was put to me best in a letter:

I’m in my seventies and have been feeling such sadness for the beautiful youth all around me. How do you address this? Do we share this ‘reality’ with people in their twenties with babies? Do we tell the teens? Will that destroy their desire to live at all, or will they burn more brightly?

Some people want to know, others, like my son and his wife, prefer to live in the more peaceful fantasy that everything’s gonna be OK. Too painful and scary to think otherwise. Some are living more extravagantly because the game’s over anyway. Some are getting tiny houses on wheels in the belief that they can motor to where it’s safer. Many others are pretty much frozen in place. Interesting to observe these responses sometimes in myself as well. I’d love to hear your perspectives.

This essay is my response to the gentle letter-writer I quoted above.

I can think of three types of responses to the reality of implacable climate change: denial, quietism, and activism.

DENIAL

Block out awareness of reality: live in your private feel-good bubble of happy-talk and entertainment; join in with the strident deniers of climate change; retreat into religious fantasy (“God will save me”). This is a popular mentally unhealthy response; not recommended.

QUIETISM

Do your best to enjoy life and take care of your family without allowing “the problems of the world” and “things beyond my ability to fix” to darken your remaining days and extended family circle. Don’t waste precious time and life-energy on political activism. Be a calm and peaceful presence in the here-and-now, and for those you love. In being a stillpoint of peace despite changing conditions, you contribute to the common good by not being a source of fear, but instead being a reliable source of comfort and strength. This is an absorptive awareness.

ACTIVISM

Become a political activist to counter climate change; this is a reactive awareness. Activism will bring you into companionship with other like-minded people, who will all feel psychological uplift as a result of experiencing an outburst of energetic altruism collectively. To enjoy this, you can’t allow the objective realization of the ultimate futility of such activism to overcome your motivation to remain involved. Any of your acts and activism that improves living conditions for others — however few the people, and however small and temporary the improvements — is a benefit to the common good, and an accomplishment that can make your life more fulfilling. It can be difficult to be both realistic and optimistic in order to remain an activist, and to accept that often tedious work can at best only result in modest and slow improvements, if any at all. But, the collapse of grandiose dreams of triumphal altruistic activism can fall into the deepest pit of disappointing burn-out.

The following article by Alfredo Acedo describes climate change activism in response (and protest) to the ineffectiveness of the 21st Conference of Parties (COP21), in Paris, to review the UN Framework on Climate Change (UNFCCC) (http://www.cop21paris.org/about/cop21). The title of Acedo’s article has a hint of collapsing illusions.

The Paris Climate Accords Will Cause the Planet to Burn
10 December 2015
Alfredo Acedo
http://www.counterpunch.org/2015/12/10/the-paris-climate-accords-will-cause-the-planet-to-burn/

THE RIGHT RESPONSE

The right type of healthy response (between quietism and activism) for any individual is a matter of their personal circumstances. What suits your particular type of personality? What fits within your range of abilities, and limits to opportunities? What is best for your physical and mental well-being, and what type of response would give you a more fulfilling life? All the right answers are unique.

I think all the right answers boil down to living consciously, and making an effort to be aware of reality; to be a thinking person appreciative of fact, logic and science; to be a tolerant person appreciative of cultural diversity; to be moral person proud of a concern to maintain good character; to be able to love without possession; and to be a comedian without unkindness.

People who expand themselves along all those dimensions will naturally help to better the human societies they are part of regardless of what geophysical changes — climate changes — occur.

The ideal response of humanity to the realization of implacable and probably fatal climate change within one to two centuries would be a revolution of personal character — “everybody” choosing to pursue the ideals of personal development just described. If such a fantasy were ever to be realized then humanity would be able to cooperate and share, to relieve the deepest forms of poverty and oppression that rob billions of meaningful lives. Then, as a cooperative and socialist (and ideally atheist) species — “we’re all in this together,” “all for one, and one for all” — we could plan for an equitable extinction, a “death with dignity” for our species, if it came to facing an implacable doom. Such a premature doom could be from climate change we brought upon ourselves, or from some other impulsive natural disaster like a solar super-flare, or the impact on Earth of a gigantic meteor.

On this idea of a planned equitable extinction (death with dignity for a human species that is terminally out-of-sync with the geophysical processes of the Earth), I will plagiarize myself from an earlier article (slightly edited).

The difficulty for most people is that we have to keep up our roles in the system (capitalism) in order to survive on a daily basis, but the system as a whole is toxic. So given a choice between voluntary immediate social suicide of the individual, and a gradual slide to the distant extinction of our whole species, perhaps past our own lifetimes, the natural choice is: I’ll burn fuel to live as I like and climb the social ladder now, and let everybody else die all together later.

I referred to the collapse of the ancient city-building Maya civilization (1000 years ago) to make the point that if the individual has the option to move out of the society — drop out, leave the rat race — and that option gives him/her a BETTER chance of preserving and propagating his/her family, as opposed to doing so within the organized social-economic system, then individuals will gladly move to “simpler” lifestyles.

Our problem is that we have not found, or been able to imagine, such individual “simplicity” options (http://www.radicalsimplicity.org/radical_simplicity.html) for ourselves that would be able to function independently despite the omnipresence of the existing industrial paradigm. That is, as individuals we can’t see how it is possible to “leave” the system; there are no isolated islands or planets for us to become Pacific Island or Star Trek pioneers. We are on a global Titanic without any lifeboats, and jammed at full-speed-ahead, with icebergs at every heading (and despite Anthropogenic Global Warming the icebergs in this metaphor won’t melt in time to save the ship).

If seeking a worldwide consensus for abandoning fossil fuels quickly and radically conserving energy to significantly reduce CO2 production does not advance, then it might be better to urge people to seek international agreement to quell political disturbances and equalize economic/human development (as measured by the Human Development Index, http://hdr.undp.org/en/statistics/hdi/) worldwide by liberally applying the world’s fossil fuel resources for social betterment, so we can enter the end-times in as homogeneous a socio-economic condition as possible, so that our species’ extinction is minimally fraught with strife.

In other words, plan for our extinction by equalizing its experience. There were people trapped by fires in the upper stories of the doomed World Trade Towers on September 11, 2001, who jumped to their deaths holding hands. I suppose if we can’t be disciplined enough to individually and collectively change our energy-use behaviors permanently, to rein in carbon dioxide production and share out energy resources with equitable frugality, then the next best option would be to share a big bonfire of an industrialized world economy to make everybody as comfortable as possible for a while, and then hold hands all around when our time is up and it’s “lights out.”

Not being an optimist, I suspect humanity will be obdurate in sticking with the “not sharing” option, and that regardless of the specific sequence and distribution of economic developments, political entanglements and natural catastrophes, that humanity will ensure for itself the most painful, lingering and inequitable demise possible given the resources.

Gloomy. Better drink more wine tomorrow, and read Mad Magazine, to cheer up.

AGW and Malthusian End Times
https://manuelgarciajr.com/2014/01/13/agw-and-malthusian-end-times/

CONCLUSION

To my dear friend who asked me “How do you address this?” I say that my personal mantra for facing my ever-expanding awareness of reality is: Enjoy!, and Be Kind.

Being an imperfect human being, I do not always live up to my ideals, but I do try. When I learn more and get better answers, I’ll write you. But for now: enjoy!, and be kind.

<><><><><><><>

How Dangerous is Climate Change?, How Much Time Do We Have?

The following article, How Dangerous is Climate Change?, How Much Time Do We Have? was written by an old friend of mine, and is published here in its entirety. The article follows a brief set of comments (by today’s guest author) about the Climate Change Conference in Paris, now underway.

<><><><><><><>

The 2015 Climate Change Conference in Paris:

• The 2015 Paris conference, while being billed as a major effort to solve the problem, is in fact too little too late.

• All of the approximately 200 nations at the conference have submitted their voluntary (greenhouse gas) reduction targets, which are applicable for the period 2020-2030.

• There is no “binding agreement” that will come out of the conference. Thus, (US President) Obama does not have to submit any agreement (from the conference) for congressional approval — which he would not get. That, of course, means that Obama’s presidential successor may ignore the emissions reduction targets for the U.S. as he or she pleases.

• Even if all the Paris voluntary emission reduction targets are added up AND become reality, climate scientists’ calculations indicate that there will still be a rise in global temperature, above baseline, of 2.4°C – 3.9°C by 2030. That would be well above the 1.5°C – 2.0°C rise above baseline, which is the widely supported consensus of the scientific community, environmentalists and island nation governments, as the upper limit to avoid catastrophe.

• So, Paris 2015 is primarily a public relations ploy to convince increasingly agitated populations — concerned about the obviously negative effects of climate change — of the reality of what is in fact a dual illusion: that a “real solution” is being “enacted.”

• Even the drastic and politically impossible solution of an immediate cessation of Industrial Civilization, as we know it, is too little to late.

• Similar efforts, most notably Kyoto (December 1997) and Copenhagen (December 2009) had largely “kicked the can down the road.” Unfortunately, it would appear that we are at the end of the road and the next can-kicking will send the can into free-fall over the environmental cliff of irreversible catastrophe.

<><><><><><><>

How Dangerous is Climate Change?, How Much Time Do We Have?

by “He Who Prefers To Remain Anonymous”
2 December 2015

THE GENERAL PROBLEM

We are likely to make better decisions if we base them on the way the universe really is. The only advantage of delusion (which includes denial and ideology) is that it is more comfortable and requires no real thought. When you consider all the wasted time and energy involved in delusion, working with reality as it is provides a far more efficient path to problem solving. Given the enormous investment by all of us (corporate and individual, financial and lifestyle-based), it is not surprising that we would rather maintain our current profits and conveniences even if that continues creating mass extinctions, ultimately including that of our own species.

For those who wish to believe in a near term human extinction and near term mass extinction in general, there is enough evidence to support such beliefs. However, there is also no indisputable timetable for these events. The science-based estimates I’ve seen for human extinction due to runaway climate change range from the very alarming 15-30 years to the less immediately concerning 100-200 years. There are, of course, those who deny the problem exists at all, those who believe it is a problem that we can fix, or those who are so consumed with day-to-day survival that this issue is essentially moot to them. For such people, timetables for human extinction are irrelevant.

It is important to realize that there is a generally recognized lag period of approximately 40 years between the time greenhouse gases are injected into the atmosphere and the resulting rise in average global temperature. So even if we stopped participating in industrial civilization today, there will still be residual temperature rise occurring for the next 40 years. In the last 29 years, humans have put more greenhouse gases into the atmosphere than in the previous 236 years back to the beginning of the Industrial Revolution (1750).

Low-carbon alternative energy technology (solar, wind, tidal, etc.) has been developed so slowly and the effort to do so has come so late that the opportunity for it to significantly limit climate change has been lost.

FOOD PRODUCTION

Average global temperature has been remarkably steady for about the last 10,000 years. This condition supported the rise and continuation of human agricultural practices. However, the rise in global temperature in the last 50 years has been 0.76°C. For every 1°C rise in global temperature, grain crop production falls about 10%. Grains (corn/maize, rice, wheat, barley, sorghum, millet, oats, rye, triticale, fonio, quinoa) provide more food energy to humans than any other type of crop. Much of the grain crop is fed to cattle which is an inefficient way to produce food. Consequently, when cereal crops fail in significant proportions, there is a temporary solution by reducing meat production and shifting to a more fully vegetarian diet for humans instead.

Numerous scientific observations confirm the decrease in snowpack accumulation around the planet in recent decades. Ice and snow accumulations in mountainous regions of the planet are a major source of water during the non-rainy portions of the year for over 100 water basins. Snow melt from the Sierra Nevada Mountains is what provides the water for the major food producing regions of California during the summer. Snow and ice melt from the Himalayas provide similar summer water for the food crops in large areas of Asia (eight major rivers and water supplies for 1.5 billion people in the region). With declining snow/ice accumulations in the mountains, food production for human populations will inevitably decline as well. Ground water pumping can make up the difference in the short run, but ground water is not unlimited. Ground water can not be a permanent solution to declines in mountainous snow accumulations.

When humans are hungry, very few give any weight to the luxuries of principles, morality, ethics, honesty, fear, patience, loyalty, love, disgust and so on. Hunger has only one agenda item of any importance: eat, however possible, but eat.

METHANE, CARBON DIOXIDE, WATER VAPOR: GREENHOUSE GASES

Baseline global temperature is the average global temperature prior to 1750. The year 1750 is considered the beginning of the Industrial Revolution.

METHANE

The U.S. Environmental Protection Agency “underestimated” by one hundred to one thousand times the methane release associated with hydro-fracturing to extract natural gas in its 1996 report on the subject. It revised its estimates in 2009, but these estimates are probably still too conservative.

Methane is a gas with approximately 100 times the heat retaining (greenhouse) power of carbon dioxide according to NASA research.

Ignoring carbon dioxide, methane leakage into the atmosphere from the Arctic Ocean alone will take us to 6°C above baseline by 2023 and 7°C above baseline by 2033. (Paul Beckwith, Canadian climate scientist, ~2014)

The enormous drive of fracturing shale formations to release natural gas (which contains ~85% methane) results in both the capture of methane and the leakage, venting or flaring into the atmosphere, of significant quantities of ‘uncapturable’ methane. The leakage is due to the limitation of the techniques and equipment used in this extraction method and the prolonged period of time that such unconventional drilling takes before actual capture of the target gas can begin.

It has been estimated that for each degree of global temperature rise the amount of methane entering the atmosphere increases several fold. This, of course, leads to more global warming and thus more methane release.

When marine life dies, most of it eventually sinks to the bottom where it decays. Because marine life is so abundant in the continental shelf areas, there are huge amounts of decaying organic material on its surface. The cold temperatures of these depths allow the methane produced by decay to become methane hydrates which tend to remain in place on the bottom. As the oceans are warming, bottom temperatures cannot keep all the methane hydrate from converting to methane gas and bubbling to the surface. As of 2014, it appears the greatest bubbling up of oceanic methane is coming out of the Arctic Ocean sub-sea shelf and slope first, but also in the northeast Pacific Ocean and, to some extent, in the coastal sub-sea shelf and slope regions all over the planet.

Methane is entering the atmosphere mainly from the huge reserves of methane hydrate trapped in terrestrial and sub-sea Arctic permafrost areas as air and water temperatures rise. Even if just a few percent of the methane hydrate reserves boil out, an average global temperature jump of 10°C is likely to occur with an extinction rate well into the 90% or greater range.

The first of many large holes were discovered in Siberia during the summer of 2013 by a helicopter pilot. Above these holes methane concentrations were measured at more than 50,000 times normal measurements. As of 2015, there are now 30 of these holes which are now being called methane eruption vents. They are being found in the same area that was the massive Trapp volcanic eruption zone (Talymir Volcanic Arc) that is credited with setting off the Great Dying of the Permian extinction. The largest of these vents is 100 m long by 50 m wide and 60-100 meters deep (110 yards long by 55 yards wide and 66-110 yards deep). Taken by themselves, they do not represent a grave threat, but taken in the context of other positive feedback developments pushing global temperatures up, they certainly should not be ignored.

Sea-level rise causes continental sea slopes to collapse, tsunamis, and release of methane (September 2013 issue of Geology, Brothers et al.) The rate of coastal erosion in eastern Siberia has doubled in the last 40 years due largely to the melting of the permafrost.

Earthquakes trigger methane release in areas with methane hydrate deposits locked in what was once permafrost on land or in the sea. The consequent warming of the planet triggers more earthquakes. More methane is released and so on. (October 2013, Arctic News, author: Carana)

600 million tons of methane are put into the atmosphere each year including both methane originating from natural sources and from human sources.

WATER VAPOR

With a warmer planet, the concentration of water vapor in the atmosphere increases. Water vapor also has a greenhouse effect. Water vapor absorbs heat and thus with more water vapor in the atmosphere, more heat is absorbed rather than reflected.

CARBON DIOXIDE

During the last 170 years, the concentration of atmospheric carbon dioxide has increased by more than 40%. During that same time period, methane concentrations in the atmosphere have increased by approximately 250%.

ALLEGED AMELIORATING STEPS

Complete collapse of industrial civilization could save many non-human species in the short run. Industrial civilization appears to underlie the Sixth Great Extinction period on Earth. We are currently losing approximately 1,000 species a year to extinction. (For those who enjoy being alarmed, there are sources that estimate species loss at 200 species per day.) The likelihood of humans voluntarily abandoning industrial civilization is approximately zero in my opinion. The comforts it has brought have strongly “addicted” people to the much advertised “good life.” Psychologists call this “hedonic adaptation.” We get so used to the new comforts (hot water showers for instance) that we forget to cherish them. We begin to simply take them for granted as things that we can no longer conceive ever being absent again. It is yet another understandable self-serving delusion. In fairness, it should be noted that “hedonic adaptation” works in reverse as well. When things we’ve taken for granted disappear, we adapt in a relatively short time and our perception of our level of happiness appears relatively unchanged.

EXTINCTIONS

Humans like to believe that evolution is a progressive and directional process leading to more complexity (i.e. so-called higher organisms). In reality, complex organisms occur primarily to occupy available supportive niches only when such niches occasionally arise. However, for 4.0 billion years, life on Earth has maintained an overwhelming and unvarying bacterial cast to its nature. Humans are considered the pinnacle of evolution primarily because humans are the ones who write and read the books in which this thought is promulgated. Humans have named the various epochs of life’s history as the Age of Fishes, the Age of Amphibians, etc. In reality, however, the history of life is one continuous Age of Bacteria.

Because bacteria reproduce by asexual division (a form of cloning), they may be considered “immortal” in a sense. Genetic change (evolution) in bacteria occurs very slowly because they simply make exact copies of their genes as they reproduce. Once sexual reproduction was “invented,” individual and species-level genetic change occurred rapidly. Every new sexually reproduced generation had remarkably diverse results. It is the diversity of a population that allows for natural selection at a much higher rate than for bacteria — thus the Precambrian explosion of life forms (species). However, the price of sexual reproduction was mortality (death) for each unique genetic combination (individuals).

The current extinction rate (2014) is approximately 100 extinctions per million species per year, or 1,000 times the natural background rates of one extinction per million species every 10 years, for the 60 million years prior to the existence of humans.

Current estimates are that there are 8 million species of life on Earth.

Of all the species of living organisms to have existed on Earth since life began here 3.8 billion years ago, how many are now extinct? The most frequent estimates range from 98% to 99.9% extinction rate. Extinction is the overwhelming rule, not the exception.

When there have been mass extinctions, it is the smaller and less specialized species that tend to survive. It is important to remember that the average size of an animal on Earth is that of a common housefly. While the human brain is a remarkably flexible organ for the ideas it can generate, humans, as a total organism, are quite specialized. Biological specialization is the adaptation of an organism or organ to a special function or environment. The human brain has been adapted to the specialized function of imaginative thought and cognitive problem solving. The human animal has more and more been adapting to thrive in an industrial civilization for at least the last few hundred years. Were civilization to suddenly collapse, billions of human beings, who are dependent on its structure, would perish in short order. Human extinction under rapid climate change is likely because a) humans are not a small species, b) humans are a highly specialized species, and c) evolutionary change is like molasses trying to outrun an avalanche of climate change.

The Permian Extinction, 250 million years ago, wiped out 95% of all species on Earth, may have more in common with the current climate changes than is comfortable to contemplate. The best reconstruction of what caused the Permian Extinction is a three step process that took place over a period of 80,000 years.

First, the huge Siberian Traps area volcanoes went off releasing enormous amounts of dust and sulfur dioxide. The dust at first created a volcanic winter for several years, followed by clear skies.

Second, once the skies cleared of dust, the sulfur dioxide acted as a potent greenhouse gas and the Earth warmed for many years, proving to be beyond the capacity of many species to survive. These massive volcanoes erupted periodically for tens of thousands of years.

Third, after about 40,000 years of this cycle of freeze-awhile and fry-a-lot, the Earth had heated up about 5°C above baseline, and the oceans had heated up as well. As the oceans heated up, organisms could not adapt and a massive die off of marine organisms occurred. All along the world’s continental shelf margins in the oceans, organic matter from these dead organisms sank and decayed in huge quantities in bottom sediments. The decay of this organic material formed methane which froze at depth in the form of methane hydrate. When the oceans heated up even more, there was a massive release of the methane hydrate as methane gas. Methane gas is another potent greenhouse gas. That massive methane release drove another round of global heating over the next 40,000 years in the range of another 5°C. At 10°C above baseline, very few organisms can survive. Thus, in this second round of global warming, most land organisms that had survived the first 40,000 years became extinct. (The evidence for a methane burst association with the Great Dying of the Permian extinction has appeared in the March 31, 2014 issue, Proceedings of the National Academy of Sciences.)

Therapsids had been a dominant group of mammal-like reptiles during the Permian Period. But only a handful of therapsids survived the Permian extinction and became diverse again by the late Triassic. In the late Triassic (225 million years ago), cynodont therapsids gave rise to mammals. The last of the non-mammalian therapsids became extinct in the Early Cretaceous, approximately 100 million years ago. With the rise of dinosaurs during the Cretaceous Period, mammals survived primarily by evolving to be small and nocturnal. Only when the dinosaurs became extinct at the end of the Cretaceous (65 million years ago) did mammals come to dominate the land. In order for humans to evolve, their ancestors have had to survive through the bottlenecks of extinctions and predation many, many times. We are here by luck alone.

It is believed that some 70,000 years ago the Toba supervolcano almost eliminated modern humans. Toba blew up a mountain in Indonesia putting 650 cubic miles of itself into the atmosphere as volcanic dust. Prevailing westerly winds pushed these volcanic dust clouds over south Asia and into the grasslands of Africa which were home to humans at the time.

The best current guess of how the Toba supervolcano affected the environment includes a two phase scenario. Immediately following the Toba supervolcano eruption the sun was dimmed for about six years, seasonal rains were disrupted, waterways were choked with ash, and hot ash covered large areas essentially smothering or baking almost all plant and animal life. At the time, humans lived in the eastern edge of Africa. The winds brought ash fall to this area in massive quantities. With plant and animal food sources being annihilated by ash fall, it is easy to see why human populations drastically diminished during this time.

Many other primate species lived further inland in Africa, often behind mountain ranges to the east. These species (macaques, orangutans, gorillas and chimpanzees) felt less impact from this first phase of Toba induced affects on the environment.

In 70,000 B.C. the Earth was already experiencing an Ice Age. In phase two, the blockage of incoming solar radiation, by ash in the atmosphere, could easily have caused the cool temperatures at the time to cool much further. Again, this would reduce the amount of plant and animal life. Evidence shows that the average temperature dropped 20°C in some spots. This cooling caused more widespread devastation.

Human, macaque, orangutan, tiger, gorilla, and chimpanzee DNA all show some signs of genetic bottlenecking (decreased variation) at this time, but it was particularly severe among humans. It has been estimated that the Homo sapien population fell to less than 2,000 individuals at this time.

In the usual list of extinctions, there is one that generally does not appear, but is particularly relevant to the current sixth mass extinction that we are experiencing. That extinction was the first one to occur.

In the early Earth approximately 4 billion years ago, the first life originated in the young oceans under an atmosphere composed of water vapor, carbon dioxide, sulfur dioxide, sulfur, chlorine, nitrogen, hydrogen, ammonia and methane, which was largely the out-gassing of the massive volcanic activity of the young Earth. There was virtually no free oxygen. With the energy of ultraviolet radiation from the sun and frequent lightning bolts, the first organic molecules formed from this chemical soup. Oxygen would have made this difficult to impossible as even in small quantities it prevents such molecules as amino acids (the building blocks of all proteins) from forming. Amino acids are assembled in the cells of organisms adapted to this oxygen-rich atmosphere while sequestered from gaseous oxygen (O2) within the cell.

The first organisms to evolve around 4 billion years ago were prokaryote bacteria (no defined nucleus) that used chemosynthesis (sulfur, iron, methane, etc.) and thermosynthesis (heat) as the basis of their metabolic activity. As with all anaerobic bacteria, oxygen is a poison and kills them. Had oxygen been a part of the early atmosphere, these organism could never have evolved. Prokaryote chemosynthesizing bacteria dominated the biosphere for about a billion years.

Around 3 billion years ago, a new variety of bacteria evolved. These bacteria had defined borders around their genetic material, a true nucleus in their cells. They are called the eukaryotes. These included the cyanobacteria (also called blue green algae) which had evolved chlorophyll with its capacity to harness energy from the sun for the production of metabolically useful chemicals. However, the waste product of this new metabolic process was free oxygen.

For millions of years, this free (very reactive) oxygen was immediately bound up in the oxidation of iron among the surface minerals of the early Earth. Eventually all the exposed iron had combined with oxygen, and concentrations of oxygen in the atmosphere began to increase. By 2.3 billion years ago, oxygen concentrations in the atmosphere had risen to 10% and a massive die-off of the anaerobic Archean bacteria occurred. In essence, the evolving organisms had caused their own extinction by poisoning themselves in the accumulating concentrations of their own waste. From a biological point of view, that extinction scenario is quite similar to the current extinction, which has been in large part triggered by the accumulation in the atmosphere of the waste products of animal respiration and the massive burning of fossil fuels (‘industrial respiration’).

The current level of oxygen in the atmosphere (20%) was probably not achieved until about 400 million years ago.

While oxygen proved fatal to anaerobic life forms of the aquatic environment, its accumulation in the atmosphere made terrestrial survival for DNA- and RNA-based life possible. Until the accumulation of oxygen in the atmosphere, the surface of the Earth was bombarded by high levels of UV-B from the sun and other forms of radiation that caused very high rates of mutation in DNA and RNA. This high rate of mutation, almost universally harmful to the organisms, prevented life from colonizing the terrestrial surface of the planet. After permanent oxygen concentrations in the atmosphere created a layer of radiation-absorbing ozone, life on the surface of the planet became possible.

Human wastes of halocarbons such as CFCs (chlorofluorocarbons) react in the atmosphere and dissociate. The free halogen atoms then react with ozone molecules altering them into other forms. Thus human waste is also reducing the protective ozone layer which has allowed life on land to flourish.

LIFE ON EARTH, TIMELINE

Life on Earth Table - Version 2It is not unreasonable to consider the Earth as a very large spherical Petri dish in relation to the first and this last period of extinction. The growth of organisms in a Petri dish follows a very predictable pattern. Organisms expand from the initial inoculation point by extensions or by leaps. Eventually the entire surface of the nutrient is occupied with the organism. Then they all die from the toxic effect of living in its own accumulating waste as well as the exhaustion of available nutrients.

NUCLEAR RADIATION DANGERS

When human industrial civilization collapses and people are scrambling for survival on an individual basis, there will only be the automatic systems left in place to keep the approximately 400+ nuclear power stations around the world from melt-downs. Those automatic systems have only enough fuel to stave off melt downs for about a month. With 400+ Fukushima melt-downs happening simultaneously, spewing enormous amounts of ionizing radiation into the atmosphere, humans are unlikely to survive this exposure for any appreciable period of time.

As of 2015, the numbers and locations of the 435 operating nuclear power plants are approximately as follows:

European Union (128)
U.S. (99)
Japan (43)
Russia (34)
China (27)
South Korea (24)
India (21)
Canada (19)
Ukraine (15)
Taiwan, China (6)
Switzerland (5)
Argentina (3)
Pakistan (3)
Brazil (2)
Mexico (2)
South Africa (2)
Armenia (1)
Iran (1)

There are another 67 reactors currently under construction, the majority of them in China (24), Russia (9), India (6), and South Korea (4).

One of the unintended consequences of continually shifting to new technologies is that, were these new technologies to fail, we have long since passed the point of generally knowing how to use the simpler, earlier technologies to solve human survival problems. Who among us can make flint arrowheads or even recognize flint as opposed to granite? Who among us know how to smelt metals to make wire for motors or generators? Our societies have become highly specialized, and specialization is one of the key features of animals that go extinct when the environment significantly changes.

ICE MELTING, BOTH SEA AND LAND

The U.S. Navy predicts a sea-ice free Arctic by 2016. The United Kingdom parliament predicts it for 2015.

Areas of Peruvian ice, which required 1,600 years for accumulation, melted completely in the last 25 years. (April 4, 2013 issue, Science, author: Gillis)

A new phenomena called dark snow was first observed in Greenland. It now can be found in much of the northern hemisphere. (November 25, 2014 issue, Journal of Geophysical Research, author: Doherty et al.) Dark snow does not seem to be included in recent climate models. Dark snow absorbs heat instead of reflecting it, thus increasing the Earth’s temperature.

Because the Arctic is showing the greatest change in climate as the planet warms, it is considered “the canary in the coal mine” for the fate of the rest of the Earth. (NASA Jet Propulsion Laboratory, author: Miller, 2013).

Average summer temperatures in the Canadian Arctic are higher than in about the last 50,000 years. (October 23, 2013, Geophysical Research Letters, author: Miller et al.)

The rates projected for climate change are much greater than the fossil record indication of how quickly vertebrate species can successfully adapt to changing conditions of their niche. (August 2013 Ecology Letters, Quintero and Wiens). In other words, vertebrates cannot evolve or adapt rapidly enough to keep up with ongoing and projected changes in climate.

As ice cover is reduced at the poles during the warmer parts of the year, there is more wave action which further erode the remaining sea ice. Glacier ice retreat is also accelerated by these new seasonally warmer temperatures. (May 5, 2014, Geophysical Research Letters, authors: Thomson and Rogers).

SEA LEVEL RISE

Glaciologist Jason Box is an expert on Greenland’s ice. In January 2013, he concluded that we can expect at least a 21 meter (69 foot) rise in sea level as inevitable due to the many “amplifying feedback mechanisms” now in real time play.

Satellite-based observations from 1993 to 2012 indicate an annual average sea-level rise of approximately 3 millimeters per year. During 2013 and 2014, sea-level has risen 10 millimeters more each year. The rate of rise in sea-level appears to be accelerating.

If all ice in the Arctic, Antarctic, high mountains, glaciers and Greenland were to melt, the expected rise in sea-level would be around 216 feet (65.8 meters). There are currently more than 5,000,000 cubic miles of ice on Earth. Some scientists predict that it will take 5,000 years for this to happen.

EVOLUTION V. CLIMATE CHANGE

Climate change is proceeding at a pace that is 10,000 times faster than the general rate of evolutionary change. Thus the idea of humanity (and other species) simply adapting to the new conditions is only wishful thinking. (Quintero, August 2013, Ecology Letters)

TIMETABLES AND ACCELERATING FORECASTS

Every year, the timetable for climate change is accelerating. As models improve and more data is collected, we are constantly having to revise the pace of climate change upwards.

The International Panel on Climate Change (IPCC) projections have been too conservative, regularly compared with actual measurements taken during the periods of the projections. The impacts of emissions on climate change have been consistently greater than the IPCC’s projections. (March 9, 2014, Nature Climate Change, author: Shindell)

Generally, climate forecasts are all too conservative. The changes necessary to mitigate the coming residual climate changes are not politically viable. The only true step to minimize the ultimate climate change progression is the end of industrial civilization. I doubt any politician could be electable on a platform of returning to an exclusively agrarian and subsistence lifestyle for all of humanity. (See Tim Garrett’s classic paper published in 2009.)

Consider the following progression of estimates of how soon average global temperature will rise:

In 2007, the IPCC’s Fourth Assessment Report forecast an average temperature rise above 1.8°C by 2100. Other emissions scenarios predict a year 2100 rise of up to 4.5°C above baseline.

In early 2008, the UK Hadley Centre for Meteorological Research projected about a 2°C rise in global average temperature by 2100.

Late in 2008, the Hadley Centre’s head of climate change prediction, Dr. Vicky Pope, stated that a worst-case scenario predicted more than 5°C above baseline temperatures by 2100.

By mid-2009, more actual data and more sophisticated models enabled the United Nations Environment Programme to project a 3.5°C rise by 2100.

By October 2009, the Hadley Centre for Meteorological Research forecast 4°C by 2060.

In November 2009, the Global Carbon Project projected 6°C increase in temperature by 2100.

In November 2009, the Copenhagen Diagnosis projected 7°C increase in temperature by 2100.

In its December 2010 analysis, the United Nations Environment Programme projected up to 5°C by 2050.

In May 2014, the international Energy Agency projected up to 6°C by 2050.

All these assessments largely fail to consider the self-reinforcing feedback loops. Example: when snow melts, it exposes darker soil and vegetation underneath. The darker material absorbs more heat than the white snow. This contributes to more snow melting and more dark surfaces being exposed. Without accounting for such positive feedback loops, projections are necessarily and inaccurately low.

OCEAN ACIDIFICATION

As carbon dioxide in the atmosphere dissolves in ocean water it forms carbonic acid. The absorption of CO2 by water is why the atmosphere has not attained the concentration that human waste volumes would have otherwise caused. The marine acidification appears to be occurring at a rate not seen in 300 million years (March 2, 2012, Science, authors: Honisch et al.). It is believed by some scientists that this acidification, along with rising water temperatures, have caused half the life in the Great Barrier Reef to disappear during the last three decades. Because plankton (the base of the marine food pyramid) are threatened by these changing conditions with extinction, the entire marine food web is threatened. Changes in ocean acidity and temperature lag well behind alterations in atmospheric CO2. Even if atmospheric CO2 increased no further, the oceans would still be absorbing CO2 and becoming increasingly acidified for many decades to come.

Ocean acidification diminishes the normal planktonic release of dimethyl sulfide. DMS helps shield the Earth from various forms of destructive radiation. (August 25, 2013, Nature Climate Change, authors: Six et al.)

Phytoplankton and zooplankton are the basis of the food web in the oceans. All plankton are sensitive to temperature increases in varying degrees depending on species involved. In general, greater temperatures slows reproduction rates. All plankton are sensitive to greater acidification of marine water. Greater acidification is more corrosive to the calcium carbonate shells that plankton create to house themselves. As the basis of the marine food web, the disappearance of phytoplankton and zooplankton imply the coming collapse of the marine food web (October 17, 2013, Global Change Biology, Hinder et al.). Acidification of the marine environment appears to be occurring rapidly (March 26, 2014, Global Biogeochemical Cycles, Sutton et al.).

Current conditions are creating a world in which jellyfish are increasingly dominating the seas (Stung! On Jellyfish Blooms and the Future of the Ocean, Lisa-Ann Gershwin, 2013). Organisms with shells are in decline. We are creating a world in which the ocean as a food source for humanity may come to an end. Jellyfish contribute to climate change via (1) release of carbon-rich feces and mucus used by bacteria for respiration, thereby converting bacteria into carbon dioxide factories and (2) consumption of vast numbers of copepods and other plankton, further contributing to the decline in population of the base of the oceanic food chain.

REFLECTIVE CLOUD COVER

As temperatures in the atmosphere warm, fewer clouds are formed and more transparent water vapor will exist. With fewer white clouds, less sunlight will be reflected back into space and more heat will be directly absorbed by the Earth (January 2, 2014, Nature, Sherwood et al.).

Clouds form up to an altitude of 45,000 feet (13.7 km). This includes the lower stratosphere, but well below the ozone layer. With altitude, temperatures drop. In the stratosphere temperatures have been in the range of -58°C (-72°F). Halfway up in the troposphere temperatures are often in the range -10°C (14°F) to -65°C (-85°F) range. It is the coldness that causes water vapor to form minute water droplets or minute ice crystals. It is billions of these droplets or ice crystals that form the white clouds we can see.

As the temperature of the atmosphere increases, less clouds form from the greater amounts of water vapor held in the atmosphere. Less clouds means less solar radiation reflected back into space. More water vapor concentrations means more greenhouse effects from that component of the atmosphere. Because the atmosphere is thinner at the poles, these effects will be greatest in the polar regions.

OCEAN CURRENTS

Deep ocean currents are apparently slowing according to some researchers. [The concern here is over the potential collapse of the thermohaline cycle, of which the Gulf Stream is a part. One effect of such a collapse would be the end of the oceanic conveyor belt carrying tropical warmth north to the western shores of Europe.]

OCEAN WARMING

Initially, when carbon dioxide began increasing its concentration in the atmosphere, much of it was absorbed in the cold waters of the oceans. Cold water generally absorbs greater amounts of gases than warm water. For instance, there is more dissolved oxygen in cold water than in warm water. Thus there is more biomass of living organisms in cold water than in warm water. As the oceans have warmed, their capacity to absorb and dissolve more carbon dioxide from the atmosphere has diminished significantly. If the oceans warm enough, they will start returning dissolved carbon dioxide back to the atmosphere.

As the ocean warms, and oxygen levels fall, the amount of life that the oceans can support will fall as well. This means less food from this source for the support of human populations.

It seems that from 1998-2013, 90% of global warming occurred in the oceans. This rate of warming hasn’t been seen for 10,000 years. Warmer ocean temperature will eventually cause rapid atmospheric temperature rises. The oceans are currently acting as a heat sink, absorbing a lot of heat that would otherwise warm the atmosphere directly (February 9, 2014, Nature Climate Change, authors: England et al.).

CONCLUSION

The prediction by some that the human species, and many if not most other species, will be driven to extinction in a 15-30 year time-frame by abrupt climate change may be alarmist. Even the most generous scientific estimates of impending human extinction are in the 100- to 200-year range. However, there appears to be little doubt that climate change is proceeding at an accelerating pace. Every time a new assessment is made of the various processes contributing to climate change, they appear to be occurring faster than the models were predicting.

Tipping points may soon be reached in which, for instance, methane release becomes sudden and enormous compared to today. These sorts of things are real possibilities. This is often the nature of positive feedback systems (non-linear dynamics).

The chances of reversing the on-going process of climate change do appear to be remote. Even the complete cessation of human production of greenhouse gases will not change the fact that there is about a 40-year lag time between what is put into the atmosphere today and its ultimate effects on climate change. A substantial reduction of human contributions of further greenhouse gases would require the virtual cessation of industrial economies, elimination of the vast domestic herds of methane producing ruminants (goats, sheep, cows, camels) and horses, and a voluntary and significant reduction of the human population itself. Even if these changes could be accomplished instantly, another 40 years of accelerating climate change is already in the pipeline. It boils down to a lot of unknowns within a framework of inevitable profound increases in atmospheric heat, ocean water heat, acidification of the oceans, collapse of the oceanic food chain, the release of methane from the ocean floor, the substantial melting of sea ice and land-based ice sheets, the substantial rise in sea level, and the consequent decrease in human agricultural production.

The only real question is how fast will the acceleration of all these processes turn out to be when all is said and done. Governments have a vested interest in preventing unbridled panic in human populations. You can imagine how human behavior would change if everyone were aware of an impending collapse of all systems that support human life. Thus, what seems to be a systemic erring on the side of overly conservative projections concerning the climate change process are, in reality, a political and social self-protective response.

Climate is complex. Climate change is much more complex. Ultimately, exact predictions of when human extinction will occur due to climate change are guesses based on trends. When that extinction will occur is what is in debate. And we are likely to discover the answer to “when?” only as it’s undeniably happening.

Climate change deniers epitomize, in my view, the statement by 1950s Stanford University psychologist Leon Festinger:

“A man with a conviction is a hard man to change. Tell him you disagree and he turns away. Show him facts or figures and he questions your sources. Appeal to logic and he fails to see your point.”

As Chris Mooney noted in a recent article (“The Science of Why We Don’t Believe in Science”):

“When we think we’re reasoning, we may instead be rationalizing.”

David Pollard is a long-time environmental activist. His blog (How to Save the World) offers a piece called “In Defense of Inaction” in which he states:

“No one is in control. The enemy, if there is one, is not a cabal of elites, but a set of co-dependent collapsing systems that every one of us has a vested interest in trying to perpetuate. Systems we have all helped co-create and are almost all dependent on.”

WHAT DOES ALL THIS CHANGE MEAN?

How should we live our brief time on Earth? The bottom-line answer to this question has not changed. Humans will continue to maximize their pleasures and minimize their pains. They will continue to reproduce, eat, drink, respire, eliminate metabolic waste products, grow, decay and die. This is the script written deep in our DNA. Everything else is optional window-dressing. Even within the larger idea of species this holds true — beginning, duration and extinction, with a relentless gathering and use of natural life-supporting resources along the way.

[H.W.P.T.R.A.]

Enjoy!, and Be Kind. [MG,Jr.]

<><><><><><><>

References not explicitly noted above:

BBC documentary: “The Day the Earth Nearly Died”

McPherson, Guy and Baker, Carolyn; Extinction Dialogs, How to Live with Death in Mind, Next Revelation Press, Imprint of Tayen Lane, ©2015

Kean, Sam; The Violinist’s Thumb, and Other Lost Tales of Love, War, and Genius, as Written by our Genetic Code, Little, Brown, and Co., © 2012

Malcolm Light posts in the website, Arctic News. Malcolm Light has been working on arctic methane research since 2000.

Malcolm Light, Harold Hensel and Sam Carana, Arctic News, “North Siberian Arctic Permafrost Methane Eruption Vents” (mantle methane leakage via late Permian deep penetrating fault and shear fracture systems rejuvenated by carbon dioxide and methane induced global warming), April 10, 2015.

Numerous fact verifications through Internet science articles including many from Wikipedia.

<><><><><><><>

ADDENDUM (23 January 2017): Outline History of Awareness of Climate Change
by Manuel García, Jr.

The clock for a public policy response to the “energy crisis” (now enlarged to “Global Warming” and “Climate Change”) started ticking in October 1973 with the First Arab Oil Embargo (1973 Oil Crisis), and we’ve yet to get off our asses in response to the alarm (40+ years later).

Four years later, the energy problem was serious enough for President Jimmy Carter to address the nation about it on the 202nd anniversary of Paul Revere’s ride (18 April 1977). See http://www.youtube.com/watch?v=-tPePpMxJaA

Peak Oil was the fear in 1977, not Global Warming, even though science had been certain about Global Warming since 1955-1957.

What follows is a very brief synopsis of the scientific development of knowledge about Anthropogenic Global Warming (AGW, which is human-caused, CO2 driven Climate Change), along with incidents of the parallel world energy crisis. Quotes are noted as from one of:

(HCCS): http://en.wikipedia.org/wiki/History_of_climate_change_science
(HS): http://www.eoearth.org/view/article/156308/
(JEA): John E. Allen, Aerodynamics, Hutchinson & Co. LTD, London, 1963.

In 1896 Svante Arrhenius calculated the effect of doubling atmospheric carbon dioxide to be an increase in surface temperatures of 5-6 degrees Celsius. Meanwhile, another Swedish scientist, Arvid Högbom, had been attempting to quantify natural sources of emissions of CO2 for purposes of understanding the global carbon cycle. Högbom found that estimated carbon production from industrial sources in the 1890s (mainly coal burning) was comparable with the natural sources. (HCCS)

In 1938 a British engineer, Guy Stewart Callendar, attempted to revive Arrhenius’s greenhouse-effect theory. Callendar presented evidence that both temperature and the CO2 level in the atmosphere had been rising over the past half-century, and he argued that newer spectroscopic measurements showed that the gas was effective in absorbing infrared in the atmosphere. Nevertheless, most scientific opinion continued to dispute or ignore the theory. (HCCS)

In 1955 Hans Suess’s carbon-14 isotope analysis showed that CO2 released from fossil fuels was not immediately absorbed by the ocean. (HCCS)

In 1957, better understanding of ocean chemistry led Roger Revelle to a realization that the ocean surface layer had limited ability to absorb carbon dioxide. (HCCS)

In a seminal paper published in 1957, Roger Revelle and Hans Suess, **, argued that humankind was performing “a great geophysical experiment,” calling on the scientific community to monitor changes in the carbon dioxide content of waters and the atmosphere, as well as production rates of plants and animals. (HS)

** Roger Revelle and Hans Suess, “Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades.” Tellus 9, 18-27 (1957)

AGW became common knowledge among aerodynamicists and atmospheric scientists by the 1960s, as witnessed by the following passage from John E. Allen’s 1963 book surveying the field of aerodynamics “for the non-specialist, the young student, the scholar leaving school and seeking an interest for his life’s work, and for the intelligent member of the public.”

Scientists are interested in the long-term effects on our atmosphere from the combustion of coal, oil and petrol and the generation of carbon dioxide. It has been estimated that 360,000 million tons of CO2 have been added to the atmosphere by man’s burning of fossil fuels, increasing the concentration by 13%. This progressive rise in the CO2 content of the air has influenced the heat balance between the sun, air and oceans, thus leading to small but definite changes in surface temperature. At Uppsala in Sweden, for example, the mean temperature has risen 2° in 60 years. (JEA)

22 April 1970: On this first Earth Day, MG,Jr decides to aim for a career in energy research, for a brave new future.

October 1973 – March 1974: The first Arab Oil Embargo (formally known as the 1973 Oil Crisis) erupts in the aftermath of the Yom Kippur War (1973 Arab-Israeli War, October 6–25, 1973).

Evidence for warming accumulated. By 1975, Manabe and Wetherald had developed a three-dimensional Global Climate Model that gave a roughly accurate representation of the current climate. Doubling CO2 in the model’s atmosphere gave a roughly 2°C rise in global temperature. Several other kinds of computer models gave similar results: it was impossible to make a model that gave something resembling the actual climate and not have the temperature rise when the CO2 concentration was increased. (HCCS)

18 April 1977: President Jimmy Carter’s Address to the Nation on Energy.

The 1979 World Climate Conference of the World Meteorological Organization concluded “it appears plausible that an increased amount of carbon dioxide in the atmosphere can contribute to a gradual warming of the lower atmosphere, especially at higher latitudes….It is possible that some effects on a regional and global scale may be detectable before the end of this century and become significant before the middle of the next century.” (HCCS)

1979-1980: The 1979 (or Second) Oil Crisis erupts from the turmoil of the Iranian Revolution, and the outbreak of the Iran-Iraq War in 1980.

March 28, 1979: A nuclear reactor meltdown occurs at the Three Mile Island power station in Pennsylvania.

July 15, 1979: President Jimmy Carter addresses the nation on its “crisis of confidence” during its 1979 energy crisis (oil and gasoline shortages and high prices). This address would become known as the “malaise speech,” though Carter never mentioned “malaise.” See http://www.youtube.com/watch?v=kakFDUeoJKM. Have you seen as honest an American presidential speech since? “Energy will be the immediate test of our ability to unite this nation.”

November 4, 1980: Ronald Reagan is elected president and the “big plunge” (the neo-liberal shredding of the 1945 postwar social contract) begins. Poof went all my illusions about an American energy revolution.

April 26, 1986: A nuclear reactor at the Chernobyl power station in the Ukraine explodes, spewing radioactivity far and wide, and the fuel core melts down. The Chernobyl disaster was the worst nuclear power plant accident until the Fukushima Daiichi nuclear disaster of March 11, 2011.

1986: Ronald Reagan has the solar hot water system removed, which had been installed on the roof of the White House during the Carter Administration. The official US energy policy was obvious to me: solar energy and conservation are dead.

In June 1988, James E. Hansen made one of the first assessments that human-caused warming had already measurably affected global climate. Shortly after, a “World Conference on the Changing Atmosphere: Implications for Global Security” gathered hundreds of scientists and others in Toronto. They concluded that the changes in the atmosphere due to human pollution “represent a major threat to international security and are already having harmful consequences over many parts of the globe,” and declared that by 2005 the world should push its emissions some 20% below the 1988 level. (HCCS)

All that AGW scientific research has done since 1988 has been to add more decimal places to the numbers characterizing the physical effects. That was a quarter century ago. So, I take it as a given that the American and even World consensus is in favor of probable extinction sooner (by waste heat triggered climate change) rather than later (by expansion of the Sun into a red giant). And, yes, the course of the extinction will proceed inequitably. Not what I want, but what I see as the logical consequences of what is.

<><><>

The addendum above is an excerpt from the following:

AGW and Malthusian End Times
(by Daniel P. Wirt, M.D., and Manuel García, Jr.)
13 January 2014
https://manuelgarciajr.com/2014/01/13/agw-and-malthusian-end-times/

AGW And Malthusian End Times

The US Chamber Of Commerce finally endorses global warming, saying “this is the greatest development in the effort to sell iceboxes to Eskimos.” (April Fools)

Homo sapiens is the first species known to have developed the intellectual sophistication to anticipate its own self-inflicted extinction, but it gives no indication of having the ability to advance its social behavior so as to prevent that outcome.

Our extinction will be a monument to our greed.

The last article intended for an Internet journal, which I contributed to, is “AGW And Malthusian End Times,” with Dr. Daniel P. Wirt, M.D., on anthropogenic global warming (AGW). We consider the impact of human-caused global warming on the well-being of the world’s poor, the political motivations of some global warming contrarians, and the prospects for global cooperation in response to the species-wide climate change crisis of probable human extinction.

AGW And Malthusian End Times
13 January 2014 (finalized 21 November 2013)
Dr. Daniel P. Wirt, M.D., and Manuel García, Jr.

Daniel Wirt (DW):

I am having trouble understanding why lefties and libertarians would see Anthropogenic Global Warming (AGW) as a conspiracy to promote “Malthusianism” (blaming poverty, misery, disease and famine on the poor because unchecked population growth among the poor outstrips resources — and taking measures to limit population growth among the poor). Critics of Malthus on the left blame the plight of the poor on capitalist exploitation.

If AGW is seen as a consumption problem, then why does controlling consumption necessarily fall on the backs of the poor? One could argue that the burden should be on the largest per capita consumers of fossil fuels — like the U.S., with 5% of the world’s population and 25% of consumption. If AGW science is accepted, then there are implications for disruption of habitat and agricultural production which will impact the poor more than the rich, and likely lead to even more imperialism and militarism in the scramble for increasingly scarce resources.

I suspect that AGW will lead to the deaths of tens or hundreds of millions in the not too distant future, from starvation, disease, wars for resources, and catastrophic weather-related events (e.g., Typhoon Haiyan, *). It may not be possible to radically reduce greenhouse gas emissions, and perhaps it is already too late, but it seems to me that the only hope for mitigating massive morbidity and mortality that will disproportionately burden the poor is to embrace AGW and radically reduce consumption, with per capita consumption limits for the rich and population control that is not class or race-based (like radically empowering women to control their fertility). I suspect that if the seeds of doubt and denial planted by left/libertarian AGW deniers take hold they will lead us to a more rapid and more adverse outcome.

* Growing Clamor About Inequities of Climate Crisis
By Steven Lee Myers and Nicholas Kulish
November 16, 2013
http://www.nytimes.com/2013/11/17/world/growing-clamor-about-inequities-of-climate-crisis.html?_r=0

Manuel García, Jr. (MG):

The clock for a public policy response to the “energy crisis” (now enlarged to AGW) started ticking in October 1973 with the First Arab Oil Embargo (1973 Oil Crisis), and we’ve yet to get off our asses in response to the alarm (40 years later).

Four years later, the energy problem was serious enough for President Jimmy Carter to address the nation about it on the 202nd anniversary of Paul Revere’s ride (18 April 1977). See http://www.youtube.com/watch?v=-tPePpMxJaA

Peak Oil was the fear in 1977, not AGW, even though science had been certain about AGW since 1955-1957.

What follows is a very brief synopsis of the scientific development of AGW knowledge, along with incidents of the parallel world energy crisis. Quotes are noted as from one of:

(HCCS): http://en.wikipedia.org/wiki/History_of_climate_change_science
(HS): http://www.eoearth.org/view/article/156308/
(JEA): John E. Allen, Aerodynamics, Hutchinson & Co. LTD, London, 1963.

In 1896 Svante Arrhenius calculated the effect of doubling atmospheric carbon dioxide to be an increase in surface temperatures of 5-6 degrees Celsius. Meanwhile, another Swedish scientist, Arvid Högbom, had been attempting to quantify natural sources of emissions of CO2 for purposes of understanding the global carbon cycle. Högbom found that estimated carbon production from industrial sources in the 1890s (mainly coal burning) was comparable with the natural sources. (HCCS)

In 1938 a British engineer, Guy Stewart Callendar, attempted to revive Arrhenius’s greenhouse-effect theory. Callendar presented evidence that both temperature and the CO2 level in the atmosphere had been rising over the past half-century, and he argued that newer spectroscopic measurements showed that the gas was effective in absorbing infrared in the atmosphere. Nevertheless, most scientific opinion continued to dispute or ignore the theory. (HCCS)

In 1955 Hans Suess’s carbon-14 isotope analysis showed that CO2 released from fossil fuels was not immediately absorbed by the ocean. (HCCS)

In 1957, better understanding of ocean chemistry led Roger Revelle to a realization that the ocean surface layer had limited ability to absorb carbon dioxide. (HCCS)

In a seminal paper published in 1957, Roger Revelle and Hans Suess, **, argued that humankind was performing “a great geophysical experiment,” calling on the scientific community to monitor changes in the carbon dioxide content of waters and the atmosphere, as well as production rates of plants and animals. (HS)

** Roger Revelle and Hans Suess, “Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades.” Tellus 9, 18-27 (1957)

AGW became common knowledge among aerodynamicists and atmospheric scientists by the 1960s, as witnessed by the following passage from John E. Allen’s 1963 book surveying the field of aerodynamics “for the non-specialist, the young student, the scholar leaving school and seeking an interest for his life’s work, and for the intelligent member of the public.”

Scientists are interested in the long-term effects on our atmosphere from the combustion of coal, oil and petrol and the generation of carbon dioxide. It has been estimated that 360,000 million tons of CO2 have been added to the atmosphere by man’s burning of fossil fuels, increasing the concentration by 13%. This progressive rise in the CO2 content of the air has influenced the heat balance between the sun, air and oceans, thus leading to small but definite changes in surface temperature. At Uppsala in Sweden, for example, the mean temperature has risen 2° in 60 years. (JEA)

22 April 1970: On this first Earth Day, MG,Jr decides to aim for a career in energy research, for a brave new future.

October 1973 – March 1974: The first Arab Oil Embargo (formally known as the 1973 Oil Crisis) erupts in the aftermath of the Yom Kippur War (1973 Arab-Israeli War, October 6–25, 1973).

Evidence for warming accumulated. By 1975, Manabe and Wetherald had developed a three-dimensional Global Climate Model that gave a roughly accurate representation of the current climate. Doubling CO2 in the model’s atmosphere gave a roughly 2°C rise in global temperature. Several other kinds of computer models gave similar results: it was impossible to make a model that gave something resembling the actual climate and not have the temperature rise when the CO2 concentration was increased. (HCCS)

18 April 1977: President Jimmy Carter’s Address to the Nation on Energy.

The 1979 World Climate Conference of the World Meteorological Organization concluded “it appears plausible that an increased amount of carbon dioxide in the atmosphere can contribute to a gradual warming of the lower atmosphere, especially at higher latitudes….It is possible that some effects on a regional and global scale may be detectable before the end of this century and become significant before the middle of the next century.” (HCCS)

1979-1980: The 1979 (or Second) Oil Crisis erupts from the turmoil of the Iranian Revolution, and the outbreak of the Iran-Iraq War in 1980.

March 28, 1979: A nuclear reactor meltdown occurs at the Three Mile Island power station in Pennsylvania.

July 15, 1979: President Jimmy Carter addresses the nation on its “crisis of confidence” during its 1979 energy crisis (oil and gasoline shortages and high prices). This address would become known as the “malaise speech,” though Carter never mentioned “malaise.” See http://www.youtube.com/watch?v=kakFDUeoJKM. Have you seen as honest an American presidential speech since? “Energy will be the immediate test of our ability to unite this nation.”

November 4, 1980: Ronald Reagan is elected president and the “big plunge” (the neo-liberal shredding of the 1945 postwar social contract) begins. Poof went all my illusions about an American energy revolution.

April 26, 1986: A nuclear reactor at the Chernobyl power station in the Ukraine explodes, spewing radioactivity far and wide, and the fuel core melts down. The Chernobyl disaster was the worst nuclear power plant accident until the Fukushima Daiichi nuclear disaster of March 11, 2011.

1986: Ronald Reagan has the solar hot water system removed, which had been installed on the roof of the White House during the Carter Administration. The official US energy policy was obvious to me: solar energy and conservation are dead.

In June 1988, James E. Hansen made one of the first assessments that human-caused warming had already measurably affected global climate. Shortly after, a “World Conference on the Changing Atmosphere: Implications for Global Security” gathered hundreds of scientists and others in Toronto. They concluded that the changes in the atmosphere due to human pollution “represent a major threat to international security and are already having harmful consequences over many parts of the globe,” and declared that by 2005 the world should push its emissions some 20% below the 1988 level. (HCCS)

All that AGW scientific research has done since 1988 has been to add more decimal places to the numbers characterizing the physical effects. That was a quarter century ago. So, I take it as a given that the American and even World consensus is in favor of probable extinction sooner (by waste heat triggered climate change) rather than later (by expansion of the Sun into a red giant). And, yes, the course of the extinction will proceed inequitably. Not what I want, but what I see as the logical consequences of what is.

For more along this gloomy vein see these four by MG:

Changing Climate For Unchanging People
28 January 2013
http://www.swans.com/library/art19/mgarci61.html

Climate Change Mental Inertia
29 November 2012
http://www.counterpunch.org/2012/11/29/climate-change-mental-inertia/

Obama’s Less Bad Arctic Oil Drilling
30 May 2012
http://www.counterpunch.org/2012/05/30/drilling-the-arctic-obama-style/

The Righteous And The Heathens of Climate And Capitalism
12 March 2012
http://www.swans.com/library/art18/mgarci43.html

Humanity will continue for a long time after both you and I are gone, but it won’t continue as efficiently, happily and equitably as we each know is possible.

DW:

OK, [on all the above]…But still I wonder, if the adverse effects of AGW will disproportionately affect the poor, why would those on the left who say they are for social justice be hostile to AGW science, when embracing AGW would be a potential mechanism for protecting the poor? In other words WHY do some on the left see AGW as a conspiracy to harm the poor, when letting AGW proceed unchecked is very likely to increase harm?

I think this is something more than just their idea that AGW is a conspiracy to promote nuclear power. But I cannot understand their AGW-Malthus link…

For example, see the excerpt quoted below from:

A Defense of Alexander Cockburn’s Libertarianism,
John V. Walsh (16 August 2013),
http://www.counterpunch.org/2013/08/16/a-defense-of-alexander-cockburns-libertarianism/

Walsh’s article is a response to this line in a Vijay Prashad review (August 9, 2013) of Alex Cockburn’s last book: “Alexander would take contrary positions that were totally inflexible (I once tried to raise the climate issue with him, only to be swatted away impatiently).”

On the second point, global warming (GW), Alexander [Cockburn] is characterized as skeptical, the proper attitude for a radical or scientist, but now a term of opprobrium. He was put off by the stench of Malthusianism in the Catastrophic Anthropogenic Global Warming (CAGW) movement and its flirtation with the gravest environmental danger of all, nuclear energy. And he quite rightly pointed out the decade long pause in warming, grown to 15 years by the time of his death [21 July 2012]. The pause was not predicted by the models used to justify the ill-defined “Catastrophe,” and it means that the direst predictions of the CAGW crowd are, let us say, a fantasy. And if [Vijay] Prashad feels that Alex was inflexible on this count, I have found that discussing the issue with the CAGW gang elicits the same level of open mindedness as mentioning the virtues of blood transfusion with a hawker of Watch Tower.

A fantasy? Not. Here is an interesting graphic (global surface temperature change versus year):

“The Escalator”
http://www.skepticalscience.com/graphics.php?g=47

The psychology of the merchants of doubt and science deniers is fascinating. Why would those presumably trained in the scientific method [e.g., John V. Walsh, M.D.] be so motivated to deny AGW science?

Why would Cockburn and Walsh see it as a Malthusian attack on the poor?

MG:

DW: “If the adverse effects of AGW will disproportionately affect the poor, why would those on the left who say they are for social justice be hostile to AGW science, when embracing AGW would be a potential mechanism for protecting the poor?”

Because they are doctrinaire. They hold a principle, or doctrine, to be more important and to be maintained as an absolute, than any practical effect such rigidity (if implemented in policy) might have on individuals.

That assumed absolute is: “the gravest environmental danger of all, nuclear energy.”

Is this true? No. But to those for whom this is an absolute, whatever happens to people as a result of blocking all avenues of thought and action that might lead to the use of nuclear power, is by definition better than the feared alternative.

The elevation of an absolute idea above individual human needs is religion. Raymond Aron wrote a famous book about the Marxist religion, called The Opium Of The Intellectuals (1955 in French, 1957 in English, reprinted by Transactions in 2001).

The fact is that however clumsy, mismanaged, and wasteful the nuclear power industry is, and however dangerous and unnecessary nuclear power is (we could do solar on a big scale ***), it could be implemented with more care, and combined with better conservation to keep the modern lifestyle going without the burning of coal for quite some time. I would prefer pure solar and really imaginative (practical, not sci-fi) conservation. But regardless, the gravest environmental threat is the possibility of losing both livable environments and climate within a period (of uncertain beginning) lasting only decades.

*** MG’s most extensive effort to make suggestions about that is:

The Economic Function Of Energy
27 February 2012
http://www.swans.com/library/art18/mgarci41.html

DW: “Why would those presumably trained in the scientific method be so motivated to deny AGW science?”

With or without scientific training, some people view everything in society “politically” and very much dualistically (either-or). With such thinking any situation always has two teams of combatants, one in power pulling the strings, and one in opposition. It is the exception rather than the norm for such thinking to be critical of conspiracy theories.

DW: “Why would Cockburn and Walsh see it as a Malthusian attack on the poor?”

The concern for “the poor” is determined by the guiding absolute doctrine.

Political direction set by a doctrinaire vanguard intelligentsia is the same as that in a theocracy: “the people” must be made to conform to the guiding principle rather than allowing the monolithic principle to be fragmented into streams of deviation so as to accommodate the myriad needs and divergent wants of a diverse population.

The lack of concern for the diversity of human needs (and desires) as compared to hewing to “principles,” which really only serve the elites that enunciate them and are always justified as being in the public interest, is characteristic of both the far right and hard left. That is where the “far” and “hard” come from: uncompromising. Hence, religion: the opium of the intellectuals.

Your problem is that you are a medical doctor, with a concern to “do no harm” and then measure success on the basis of reducing individual human suffering regardless of whether an original hypothesis and diagnosis was preserved as an absolute truth or rejected as flawed. Doctrinaire doctors must surely be less successful. Doctrinaire politicians, on the other hand, are not motivated by the Hippocratic Oath.

MG discusses Raymond Aron in:

Political Belief And Self Image: Aron, OWS, And Libya
7 November 2011
http://www.swans.com/library/art17/mgarci31.html

DW:

Have you seen this by John W. Farley? I just discovered it today while taking a break between cases.

The Scientific Case for Modern Anthropogenic Global Warming
July-August 2008
John W. Farley
http://www2.swccd.edu/~mseteachingresources/msetrshare/biology/atwater/Bio%20140/The%20Scientific%20Case%20for%20Modern%20Anthropogenic%20Global%20Warming.pdf

From Farley’s article:

Most Americans today believe that the burning of fossil fuels is causing global warming, but not everybody agrees…as a physics professor who has lectured on global warming since 2001, I emphatically disagree with [Alexander] Cockburn’s perspective on global warming…[Farley’s] article consists of: (1) a summary of the scientific case for modern anthropogenic global warming, (2) a summary of the contrarian case advanced by Cockburn, (3) an assessment of global warming in greater depth, and (4) my detailed critique of the contrarian arguments advanced by Cockburn. The scientific case is not dependent on citation of authority, no matter how distinguished the authority may be. The case is dependent upon experimental evidence, logic, and reason.

I’m glad Dr. Farley did this. And he updated the article in a 2010 essay:

Cockburn on Global Warming: A Rebuttal
John Farley
mrzine.monthlyreview.org/2010/farley040110.html

For Walsh to write his 2013 article despite the massive scientific consensus and the ready resources, including Farley’s 2008 article (and 2010 update), indicates strong doctrine overrunning science reality.

MG:

I saw the escalator graph you cited, and a very good visual it is.

My version of Farley was posted in 2007, it is a description for a general audience of the physics and chemistry of AGW.

Climate and Carbon, Consensus and Contention
4 June 2007
http://www.dissidentvoice.org/ 2007/06/climate-and-carbon-consensus-and-contention/

I originally wrote my AGW article with Alex Cockburn in mind, and sent it to him before it went anywhere else. But, I have learned that people believe what they want to believe.

Here is my own memorial to Alex Cockburn, where I discuss his views on AGW (and my AGW article in response):

Memorial to Alexander Cockburn (MG,Jr.)
https://manuelgarciajr.com/2012/08/11/my-memorial-for-alexander-cockburn/

There are lots of people out there with preferences at variance to reality, and a will to bend everyone to their views. [I have to remind myself of this periodically, to keep my own sense of balance.]

DW:

Some view AGW as a ruse to promote Malthusianism. But, I think it is exactly the other way around: global warming science denial ensures unmitigated Malthusian catastrophe.

Anyway, as you say, we’re done for. That is Guy McPherson’s thesis. Have you seen this:

Sleepwalking to Extinction
14 November 2013
Richard Smith
https://www.adbusters.org/magazine/110/sleepwalking-extinction.html

I find it interesting that Richard Smith does not mention nuclear power.

MG:

Smith’s article is spirited, but without any new suggestions. It recommends a global insurrection leading to socio-economic and energy nirvana. I poured water on this topic (at heart an appeal to marxist-religious fantasy) in a recent article (for which one of the faithful called me “the misanthrope”):

Black Gold, Maximum Entropy
21 October 2013
http://www.swans.com/library/art19/mgarci73.html

The difficulty for most people is as Smith describes, we have to keep up our roles in the system (capitalism) in order to survive on a daily basis, but the system as a whole is toxic. So given a choice between voluntary immediate social suicide of the individual, and a gradual slide to the distant extinction of our whole species, perhaps past our own lifetimes, the natural choice is: I’ll burn fuel to live as I like and climb the social ladder now, and let everybody else die all together later.

I referred to the collapse of the ancient city-building Maya civilization (1000 years ago) to make the point that if the individual has the option to move out of the society — drop out, leave the rat race — and that option gives him/her a BETTER chance of preserving and propagating his/her family, as opposed to doing so within the organized social-economic system, then individuals will gladly move to “simpler” lifestyles. Our problem is that we have not found, or been able to imagine, such individual “simplicity” options (http://www.radicalsimplicity.org/radical_simplicity.html) for ourselves that would be able to function independently despite the omnipresence of the existing industrial paradigm. That is, as individuals we can’t see how it is possible to “leave” the system; there are no isolated islands or planets for us to become Pacific Island or Star Trek pioneers. We are on a global Titanic without any lifeboats, and jammed at full-speed-ahead, with icebergs at every heading (and despite AGW the icebergs in this metaphor won’t melt in time to save the ship).

If seeking a worldwide consensus for abandoning fossil fuels quickly and radically conserving energy to significantly reduce CO2 production does not advance, then it might be better to urge people to seek international agreement to quell political disturbances and equalize economic/human development (as measured by the Human Development Index, http://hdr.undp.org/en/statistics/hdi/) worldwide by liberally applying the world’s fossil fuel resources for social betterment, so we can enter the end-times in as homogeneous a socio-economic condition as possible, so that our species’ extinction is minimally fraught with strife. In other words, plan for our extinction by equalizing its experience. There were people trapped by fires in the upper stories of the doomed World Trade Towers on September 11, 2001, who jumped to their deaths holding hands. I suppose if we can’t be disciplined enough to individually and collectively change our energy-use behaviors permanently (as in successful weight loss), to rein in carbon dioxide production and share out energy resources with equitable frugality, then the next best option would be to share a big bonfire of an industrialized world economy to make everybody as comfortable as possible for a while, and then hold hands all around when our time is up and it’s “lights out.”

Not being an optimist, I suspect humanity will be obdurate in sticking with the “not sharing” option, and that regardless of the specific sequence and distribution of economic developments, political entanglements and natural catastrophes, that humanity will ensure for itself the most painful, lingering and inequitable demise possible given the resources.

Gloomy. Better drink more wine tomorrow, and read Mad Magazine, to cheer up.

DW:

Actually, what I hear you describing in your response is the possibility/probability of mitigation. That is why I used the word “unmitigated” in my sentence, “global warming science denial ensures unmitigated Malthusian catastrophe.”

Nor am I an optimist. But, I am nearly through the 5 stages of grieving of Elisabeth Kübler-Ross (denial, anger, bargaining, depression, acceptance). In fact, I think that many of those on the left who deny global warming science are stuck in the denial stage, stuck in the psychological defense mechanism of denial. They cannot accept AGW because it runs counter to their guiding ideology and doctrine (or so they think). Instead they view AGW as a ruse perpetrated by the elite to further oppress and exploit the poor in the context of capitalism and imperialism (Malthusianism).

Paradoxically and ironically, AGW is perhaps the greatest sin of capitalism, the greatest crime of capitalism, and mitigating AGW is perhaps the most monumental anti-capitalist task in human history. So, AGW really does fit within the ideological framework of the leftist deniers of global warming science — they just fail to recognize it. AGW is the capstone of capitalist exploitation, adversely affecting all classes of humans (and hundreds of thousands of other species), but disproportionately affecting the poor. I think Karl Marx would agree.

MG:

People believe what they want to believe. That, more than anything else, will be the ultimate cause of humanity’s passing.

DW:

To paraphrase Derrick Jensen, being out of touch with reality is the most basic definition of insanity, ****. With regard to AGW, the bottom line description of reality has been written by a physicist, Arthur P. Smith (http://arthur.shumwaysmith.com/life/content/the_arrogance_of_physicists). In the end, physics trumps the small fringe group of global warming science deniers of all political stripes and rigid political doctrines who create much heat and smoke, but no light.

Proof of the Atmospheric Greenhouse Effect (PDF)
29 February 2008
Arthur P. Smith
http://arxiv.org/pdf/0802.4324v1.pdf

**** A psychological disorder is: “Any personal construction which is used repeatedly in spite of consistent invalidation.” — George Alexander Kelly (1905-1967), http://oaks.nvg.org/george-kelly.html. Kelly’s definition is the oldest likely source of the several quotes that have been blended into the well-known saying attributed to Albert Einstein (1879-1955): “The definition of insanity is doing the same thing over and over and expecting a different result.”

<><><><><><><><><><><><><><><><><><><><><>[end of AGW & Malthusian…]

Some recently published items related to AGW are noted below.

Former BP geologist: peak oil is here and it will ‘break economies’
(Industry expert warns of grim future of ‘recession’ driven ‘resource wars’ at University College London lecture)
23 December 2013
Nafeez Ahmed
http://www.theguardian.com/environment/earth-insight/2013/dec/23/british-petroleum-geologist-peak-oil-break-economy-recession

<><><><><><><>

Dear Arctic News (http://arctic-news.blogspot.com/):

Your interesting website posted the article

Act Now On Methane
21 December 2013
Malcolm Light
http://arctic-news.blogspot.com/2013/12/act-now-on-methane.html

in which a scheme to break down the methane bubbling out of the ocean surface, by oxidizing it with OH radicals created by crossed beams of lasers and microwaves, was described.

The argument was made that if such a scheme were applied on a large scale (over a wide area of the Arctic Ocean) it might succeed at mitigating (neutralizing?) the global warming potential (the infrared absorptivity) of the erupting plumes of organic vapors.

Some years ago, I conducted an experiment that attempted to produce OH for the purpose of breaking down trace amounts of NOx in moist air (idealized auto exhaust pollution). Part of that work was a chemical kinetics model of the proposed system. The paper describing this work is here:

OH Generation In Steam-Air Pulsed Corona
21 August 1995
http://www.llnl.gov/tid/lof/documents/pdf/226026.pdf

Our findings hinged on two facts:

– the target pollutants (whether NOx or organic vapors) occur in trace amounts, molecules of N2, O2 and even atmospheric moisture are far more numerous, and

– OH is so extremely reactive.

OH is formed very promptly upon the occurrence of ionization (from an electrical or electro-optical pulse). Because of the extreme reactivity of OH, and the overwhelming abundance of N2 and O2 molecules, dissociation occurs producing N and O atoms, and other radicals like HO2 and hydrogen atoms.

Subsequent reactions between this soup of many species has the atoms recombining (the dominant species being N2, O2, H2O), and the intermediate radical species diminishing (H, OH, HO2, O3, etc.), so that the ultimate trace products are NO (and NOx), CO, CO2, HNO3 (nitric acid), H2, and H2O2 (hydrogen peroxide). Over a long time scale these stable species reduce to NOx, CO2, H2O, and HNO3 bound to water molecules.

While it is true that OH combining with a pollutant trace species (NOx or a hydrocarbon vapor) will oxidize it, such molecular collisions are rare events. Each OH molecule has a much higher probability of collision with a dominant species (N2, O2, H2O). So the chemistry that determines the fate of the atoms initially bound into pollutant molecules is overwhelmingly determined by the intermediate radicals produced by the OH oxidation of N2, O2 and H2O. For NOx pollutants this leads to an ultimate chemical sink of nitric acid; for hydrocarbon pollutants this leads to an ultimate chemical sink of CO2 (carbon dioxide) and water.

So, I don’t think chemical kinetics will favor the scheme described in Malcolm Light’s article.

Another difficulty with the proposed crossed-beam sea-surface ionization scheme is that the production of OH molecules is very energy intensive. For the conditions of our experiment (a steam-air mixture at 1 atmosphere), it required 456 joules/cc to produce 3 to 4 ppm of OH. The ionization streamers in our experiment were of 38 kV and 60 A for 20 ns, and of volume 10^-4 cc. This pump energy density is equivalent to 456 MJ/m^3 (delivered at the ionization volume). If such an ionization volume could be formed as a sheet 1 mm thick then its area would be 1000 m^2 (requiring 456 MJ). The pump energy required to ionize a 1 mm thick sheet of 1 square kilometer would be 456 GJ (giga-joules). The electrons liberated by an ionizing pulse (~20 ns) would disappear by recombination and attachment (forming molecular negative ions) within 100 ns.

I think it would be very difficult to produce ionization volumes of sufficient size, and with sufficient frequency, to intercept most of the methane continuously billowing out of the Arctic Ocean and surrounding coastal areas.

Much as I would like to see the development of an efficient technology to neutralize the arctic methane plumes, I do not think the scheme suggested in Light’s article will succeed.

Regards.

<><><><><><><>