Gold, Swords, and Tumulus Grave Goods Forever?


Gold, Swords, and Tumulus Grave Goods Forever?

From our Neolithic Past to our Radioactive Present — and future? — gold, swords, and tumulus grave goods of hoards of icons of materialistic wealth have been our chosen markers of human achievement; in all a genuflection to the triumph of materialism over intellect and spirit.

Socialism is the economic ideology of abundant prosperity, democracy is its political ideology, and peace is its mythology.

Prosperity is the warmth of good living generated by the consumption of natural resources into the entropy of waste products. The expansion of prosperity is fueled by the diminishment of Nature and the increase of enslavement by the expansion of imperialism vacuuming in new resources to the homeland from ever farther afield. The military, like a wildfire, is an expanding ring of consumption whose center is a widening desert of entropy: resource scarcity and waste with a smattering of capstones of wealth atop pyramids of power. War is the collision of expanding rings of militarism; conquest is the collapse of one against the pressure of another.

A diminishing access to prosperity leads to a narrowing and heightening of political power, and a popular sharpening of competition for resources with a consequent hardening of attitudes of overt racism, and an increasing fragmentation of society into a steepening hierarchy of classes based on submission to and patronage by superiors, until society ultimately degenerates into a dictatorial kingship over a realm of desperation. Fascism is the populist submission in industrialized societies to rising kingships over realms of expanding scarcity.

Sustainability within the Natural World is the conception of frugality as freedom and not poverty. Sustainability is the submergence of human identity into Nature, and seen as a release and not a collapse, instead of being an ever heightening emergence above it. Sustainability is the conceptualization of civilization as organic within the Natural World, instead of a construction caging it. Sustainability is seeing human empowerment as coming from submission to Life, instead of from defiance of it, and of seeing Life as anarchic instead of hierarchical.

God reigns if all are dead. God is dead if all are alive, if all are each infinitesimal glints from the underlying sea of godliness that is Life.

I looked up into the day, shielding my eyes against the brilliance of the sun infusing warmth into my skin, to see low wispy white clouds streaming across the top of my wooded canyon while slowly roiling within themselves, as invisible cascades of crystalline air surged with turbulent reverberations over the hilltops and down into the canyon, splashing into near-chill breezes soughing through the forest green ringing with birdsong scintillating the leaves and rippling their dappled network of reflected sunlight, to brush against me as I stood immersed in wonder once again under the soaring of a black hawk, amazed to be experiencing this immensity of Life, this great outside beyond human limitations. I am a brief instance of all this, and that realization is my share of the eternal.

[Image by Caitlyn Grabenstein]


Nate Hagens, on Earth and Humanity

Watch the video presentation “Earth and Humanity: Myth and Reality,” (2:52:15) by Nate Hagens, linked below. Hagens presents an analysis and grand synthesis of the multi-entwined crises of unsustainable human society living in the rapidly degrading world climate of an increasingly resource-depleted and increasingly inhospitable Planet Earth.

I guarantee that you will find many of your own views on this topic reaffirmed by Hagens, and also that he will challenge at least one of your cherished beliefs about it. This is good for serious people, it prompts them to think anew, and to rethink their assumptions.

What impresses me about Hagens’ analysis is that it is based on a wealth of data — the lifeblood of any real scientific or economic analysis — and that it is a multidimensional systems analysis, and not merely a “one note Johnny” narrow expertise (just finance, or just physics), single “smoking gun” caused problem (as the “overpopulation” reductionists claim) or a promotion of a single route to salvation solution (as the “nuclear power” reductionists claim). Hagens’s is an integrated description of the dysfunctional global system, which Nature plus Humanity has become, rather than merely being an uncoordinated list of a myriad of disconnected disasters, pathologies, ruins and wrecks.

Hagens does make specific recommendations near the end of his video, aimed at getting us (particularly in the U.S.A.) to begin dealing with our ongoing global systems failure in a substantive manner. After that he adds a few seconds of wordless video that will delight all lovers of wildlife.

Any abstraction of Hagens’ presentation to a single phrase would wash away all its insights and nuance, and would be unjust to the cause of transmitting understanding to the public. But, if you want an indicative soundbite, here is my maximally reductionist summary: humanity needs to scale back its use of energy very very significantly, and permanently, and now — an energy diet — just like a forever-maintained eat-less food-calorie diet needed to break an individual free from obesity.

Hagens’ video will make any serious person think (and we all better get serious), and that is the first essential step for us ever having a chance to get out of the mess we’re in.

Earth and Humanity: Myth and Reality
16 May 2021 (Nate Hagens)

The following two paragraphs are my abstraction and consolidation of internet descriptions of Nate Hagens, with much of this information drawn from The Post Carbon Institute (

Nate Hagens has a Masters Degree in Finance from the University of Chicago and a PhD in Natural Resources from the University of Vermont. He is a former editor of The Oil Drum and worked on Wall Street for a decade before “seeing the light.” Since 2003 Nate has shifted his focus to understanding the interrelationships between energy, environment, and finance and the implication this synthesis has for human futures. Previously, Nate was President of Sanctuary Asset Management and a Vice President at the investment firms Salomon Brothers and Lehman Brothers. Currently, he teaches a systems synthesis Honors seminar at the University of Minnesota ‘Reality 101 – A Survey of the Human Predicament.’

Nate focuses on the interrelationship between debt-based financial markets and natural resources, particularly energy, and the unplanned for risks from the coming ‘Great Simplification.’ He also addresses the evolutionarily-derived underpinnings to status, addiction, and our aversion to acting about the future and offers suggestions on how individuals and society might better adapt to the coming decades.

Jeff Gibbs 2019 video “Planet of the Humans,” released publicly on Earth Day 2020, was the most important presentation on the realities of our global “climate change” crisis to be made available in many years ( Nate Hagens’ new video “Earth and Humanity: Myths and Reality” is of much grander scope and at least of equal importance. See it and don’t get defensive, then refine your own stance from your points of disagreement with Hagens, and/or improve his systemic analysis, which is the type of thing needed to converge politically on what in all honesty would have to be called a World Plan for guiding human civilization through a transition — the Great Simplification — to a post carbon future, without suffering a catastrophic and life-ending collapse.

As a 20th century mechanical engineer who focused himself on the 19th century science of thermodynamics (and got away with a career in experimental nuclear explosions), I’ve said all what little I was competent to say about the physics and economics of “climate change.” So at this point all I can offer on the topic is bad poetry, and I’ll spare you that. But I can also recognize the value of new presentations like those of Gibbs and Hagens, and urge others to see them, study them, and act on them.

I am mindful of the urgent and totally justified demand posed by the next generation onto us world-controlling and world-destroying adults, through the voice of Greta Thunberg, for “action!” Nate Hagens’ systemic analysis is a very important step toward answering the questions of “what actions?” and “how do we implement them?”, and of actually working on Greta’s demand.

[Thanks to Isabel Ebert for pointing me to Nate Hagens’ video.]



Richard Heinberg both appears in “Planet of the Humans,” and leads the Post Carbon Institute.

The Most Colossal Planning Failure in Human History
May 2021
Richard Heinberg


Black Gold, Maximum Entropy (Redux)

The following article is about fossil fueled (‘fracking’ fueled) global warming climate change. It was written in 2013 and remains completely up to date because nobody has done anything to change the situation — except perhaps to make it worse. This article contains a little bit of science, a little bit of Marxism from John Bellamy Foster, some criticisms of Mr. Foster’s views from me, and one of my better rants on society’s negligence regarding climate change (or, some pointed suggestions for social change). By 2013, I had reached pessimistic conclusions about humanity’s willingness to seriously address global warming, and also about the value of my continuing to write about it. That I do and continue to make positive and “utopian” suggestions for socio-political change is entirely to express my solidarity with today’s youth (I have children), because otherwise I have no faith whatsoever in “the adults.”


Black Gold, Maximum Entropy (Redux)
20 June 2019 (21 October 2013)

In his extensive article “The Fossil Fuels War” in Monthly Review, John Bellamy Foster writes about the new expansion of oil exploration and production — the demise of Peak Oil — made possible by the development of technology to extract oil from “unconventional” sources, known variously as “shale oil” and “tar sands oil,” and he points to the inevitable consequences on climate. (1)

Those scheduled climatic effects are vividly presented in a new scientific report in which:

Scientists from the University of Hawaii at Manoa calculated that by 2047, plus or minus five years, the average temperatures in each year will be hotter across most parts of the planet than they had been at those locations in any year between 1860 and 2005. To put it another way, for a given geographic area, “the coldest year in the future will be warmer than the hottest year in the past,” said Camilo Mora, the lead scientist on a paper published in the journal Nature. (2)

John Bellamy Foster also notes that there have been recent improvements in renewable energy technologies, whose use could be expanded to replace a portion of the power generation infrastructures based on fossil fuels. However, he is pessimistic that such replacements could form a prompt and complete transformation of national and global power generation systems.

No less remarkable technological developments, however, have arisen at the same time in relation to renewable energies, such as wind and solar, opening up the possibility of a more ecological path of development. Since 2009 solar (photovoltaic) module “prices have fallen off a cliff.” Although still accounting for a tiny percentage of electric-generating capacity in the United States, wind and solar have grown to about 13 percent of total German electricity production in 2012, with total renewables (including hydroelectric and biomass) accounting for about 20 percent. As the energy return on energy investment (EROEI) of fossil fuels has declined due to the depletion of cheap crude-oil supplies, wind and solar have become more competitive – with EROEIs above that of tar-sands oil, and in the case of wind even above conventional oil. Wind and solar, however, represent intermittent, location-specific sources of power that cannot easily cover baseload-power needs. Worse still, a massive conversion of the world’s energy infrastructure to renewables would take decades to accomplish when time is short.

I disagree with this pessimism and believe a massive conversion to renewable energy technologies can be accomplished much more quickly than started in mass media and John Bellamy Foster’s article. I made my case with numerous suggestions, estimates and examples in an article, “The Economic Function Of Energy,” intended to spur positive, creative and practical thinking about such a near-future conversion of energy infrastructure on a national scale. For example, I described a solar-powered system for generating the total electrical power consumed in the United States, which would be publicly owned and thus provide “free” electricity. (3)

Foster notes the foundational motivation of the fossil energy industry as stated by one of its leading CEOs, “my philosophy is to make money.” Concerns over possible environmental damage (from exploration or spills) and climate change (from carbon dioxide and methane emissions) are seen as unfortunate collateral inevitabilities to be minimized as possible, but without delaying extractive operations or seriously diminishing profitability.

Foster gives a good general summary of what is required to make a complete conversion nationally (say for electrical power) from fossil fuels to renewables (solar, wind, hydro), but he sees such a conversion as too monumental a project for our time, while I see it as an exciting and feasible technical challenge, an inspiring project for technophiles that would be liberating for society. Foster writes:

It follows that building an alternative energy infrastructure — without breaking the carbon budget — would require a tectonic shift in the direction of energy conservation and energy efficiency. However, stopping climate change and the destruction of the environment in general requires not just a new, more sustainable technology, greater efficiency, and the opening of channels for green investment and green jobs; it requires an ecological revolution that will alter our entire system of production and consumption, and create new systems geared to substantive equality, and ecological sustainability — a “revolutionary reconstitution of society at large.”

Yes, developing a mass consciousness of energy conservation and energy efficiency in an American society of unthinking wastefulness may indeed seem like a “revolutionary reconstitution of society at large.” But the real revolution here would be in the awakening of greater thought among the masses, to displace the unthinking aspects of behavior that enable wastefulness. That apparent barrier to the energy revolution would dissolve if confronted with forthright and consistent effort by the political leadership. The unappealing aspects of continuing climate change will undoubtedly increase the popularity of the idea of making such a revolutionary transition. As Foster says: “In today’s world, the undermining of the lifeworld of the great majority of the population is occurring in relation to both economy and environment.”

John Bellamy Foster sees the conversion of most power generation infrastructure from a reliance on fossil fuels to renewables as too daunting a technical challenge for the near term, and he believes that worsening climate change will spur the rise of popular movements that could revolutionize society so that it meets the energy conversion challenge in the long term.

We can therefore expect the most radical movements to emerge precisely where economic and ecological crises converge on the lives of the underlying population. Given the nature of capitalism and imperialism and the exigencies of the global environmental crisis, a new, revolutionary environmental proletariat is likely to arise most powerfully and most decisively in the global South.

I believe just the opposite, that the technical challenge is well within present capabilities and has been for many years, but that the conversion to renewables will never occur because most people operate from mental inertia that is programmed to keep them on the rails of the capitalist economics and environmental exploitation we see today.

People everywhere want to replicate and experience the advantages of the colonial powers of the 19th century (e.g., Britain) and the industrial-consumerist powers of the 20th century (e.g., the U.S.A.). This is why China builds huge dams and burns enormous quantities of coal, fatally fouling its air; and why southern Europe and the southern U.S. are flooded with economic refugees from the “global South.”

James Hansen is quoted in Foster’s article saying “It is not an exaggeration to suggest, based on the best available scientific evidence, that burning all fossil fuels could result in the planet being not only ice-free but human-free.”

And this is precisely what will happen, because “my philosophy is to make money” is the end-all-and-be-all everywhere, whether in rich northern capitalist states or the impoverished global south seeking “to develop.”

Foster concludes his article with lyrically wishful Marxist romanticism.

Under these conditions what is needed is a decades-long ecological revolution, in which an emergent humanity will once again, as it has innumerable times before, reinvent itself, transforming its existing relations of production and the entire realm of social existence, in order to generate a restored metabolism with nature and a whole new world of substantive equality as the key to sustainable human development. This is the peculiar “challenge and burden of our historical time.”

There is no objective evidence to suggest this is anything other than a fantasy. Instead, it seems realistic to conclude that humanity’s conceptual and social limitations will lead to its premature extinction sooner than need be the case because of the onset of hostile environmental conditions due to the sun expanding into a red giant. Such a premature extinction would not be a “bad thing” for Planet Earth, which would continue unperturbed without another of the millions of species that have appeared and disappeared during the course of life on Earth. Other forms of life will continue; why should we imagine that humanity is so special that it deserves particular concern as regards continuing to be one of the carriers of life on this planet?

Many people besides archeological scholars have wondered why the Maya people in the southern lowlands of Central America abandoned their splendid stone ceremonial cities and pyramids about 1000 years ago, and which now lie in ruins under jungle vegetation. (4) The basic reason was that the ancient Mayan public dumped the excessive overhead of a top-heavy oppressive and burdensome culture during a time of environmental stress (droughts) so as to better attend to personal survival. Manning wars of rivalry between royal elites did not ultimately satisfy the basic needs of the “proletariate.” They did not so much revolt to establish a new social order as simply walk away into the jungle to disappear from the existing order, letting it collapse from lack of support. If a similar disorganized mass movement of abandonment of the organized economy and socio-political class structure were to take hold for most of the “proletariate” today then one could begin to speculate about the possibilities for the emergence of alternative types of post-capitalist societies, and following that to speculate on a new relation of humanity to the environment and the prospects for an extended period of highly developed human culture on Planet Earth.

Humanity is terminally delirious with fossil fuel fever. “Climate change will proceed unhindered, as will the uninterrupted rush by humanity to exploit all sources of fossil fuels. The moral choice between restraint for the good of all life versus gaining an immediate boost to private power will always be won by the latter.” My conclusion is not what I want, but what I see as the inevitable consequence of what is. (5)

Matthew Auzanneau has written about one example of humanity’s fossil fuel delirium, the necessarily short-lived shale oil boom in North Dakota and the avid involvement of the investment banking firm of Goldman Sachs in it, putting their philosophy into practice “to make money.” I see Auzanneau’s article as support for my gloomy conclusion, and it was the launching point for my concluding rant. (6)

I think that people will overwhelmingly do nothing in the form of restraint on CO2 emissions and yet be frantic about gouging out every ounce of oil and coal they can get to ASAP (e.g., China, North Dakota), to burn it up and drive whatever power and money schemes they are pushing. As a result, I no longer have any enthusiasm for writing about alternative energy systems. Most people simply want to maintain the inertia of their current thinking and economic activity, to maintain their present forms of exploitation (businesses). They do not want any changes to their existing modes of energy waste and financial accumulation (e.g., fracking for domestic-use oil, mining shale oil and coal for export, big engines in oversized truck-like cars for mindless driving, suburbia, capitalism commodifying and discounting the environment), just more of the same so they can “get their share,” especially “before it runs out.” Hurricanes, tornadoes, rising seas, droughts, months-long wildfires, the spread of tropical diseases and parasites to temperate latitudes, none of that matters in comparison to keeping on with getting “more.” We have a quarterly profits expectation, long-term attention-deficit syndrome, infantile hyperactive, selfish spoiled-brat economic mentality. Nobody but nobody wants to be the first person, or in the first class or generation to “make the sacrifice” to “give up the advantages” of our eco-catastrophic ways in order to shift a nation, and humanity, to a sustainable alternative. Planet Earth could care less, it will shrug us off as just one more ephemeral slime mold, and our dust will be ground into the grains of future rocks over which advanced cockroaches will stride, perhaps as rulers of Planet Earth.

Actually, the disintegration we see and can anticipate fits in well with the trend to be expected from the Second Law of Thermodynamics, the relentless increase of entropy — disorder — with the widest dispersal of energy and structure (into lack of structure) as the ultimate end.

Any physical system that can absorb and emit energy, and perform work on other physical systems external to it, is a thermodynamic system (e.g., the combustible gas mixture within a piston engine cylinder). The Second Law of Thermodynamics states that any isolated thermodynamic system must ultimately degrade; such degradation is quantified as an increase in the thermodynamic property of the system called its entropy. Consequently, all real engines convert energy (e.g., heat) to work (e.g., torque) with less than 100% efficiency, perpetual motion machines are impossible, and the entropy of the entire universe relentlessly increases.

The great physicist Ludwig Boltzmann committed suicide (in 1906) while in a state of clinical depression it is said after contemplating the implacable increase of universal entropy, his most penetrating discovery about statistical (many particle) thermodynamic systems. Clearly, he had a strong belief that humanity mattered. Perhaps if he had been able to overcome that misconception he would not have fatally despaired. His gravestone in the Central Cemetery in Vienna is inscribed with his famous formula for the entropy of a statistical thermodynamic system, S = k·Ln(W), where S is the entropy of a thermodynamic system, k is Boltzmann’s constant (1.38065 x 10^-23 joules/degree-Kelvin), Ln is the mathematical function called the natural logarithm, and W is Wahrscheinlichkeit, a German word meaning the number of (unobservable) “ways” in which the (observable) thermodynamic state of a system can be realized by assigning different positions and momenta to the many molecules of that system. (7)

W can be thought of as the number of ways the system can arrange itself microscopically (its multitude of molecular positions and velocities) so as to exhibit a specific set of values of observable macroscopic properties (a thermodynamic state), like: temperature at 70 degrees Celsius, pressure at 101,325 Pascals or equivalently 14.696 pounds per square inch (psi). A thermodynamic state that can only be achieved by any of a small number of possible microscopic arrangements is one of high order and has low entropy. A thermodynamic state that can be achieved with any of a large number of possible microscopic arrangements is one of low order, that is to say of disorder, and has a high entropy. At the inception of the Big Bang, the universe was a point of energy and its entropy was very low. Today, 13.8 billion years later, the universe is an expanse of perhaps 1.3 x 10^23 km that is largely void with a sparse scattering of matter and radiation, and historically maximum entropy.

Here on Earth the black gold rush will eventually burn itself out and bequeath us a state of increased disorder that devoured opportunities for transformation.

Acknowledgment: Gilles d’Aymery brought my attention to Notes 1 and 6, which spurred me to write this article.

[except for more recent re-postings in 3 and 5, websites were active on 21 October 2013]

1.  John Bellamy Foster, “The Fossil Fuels War,” Monthly Review, 2013, Volume 65, Issue 04 (September),

2.  Justin Gillis, “By 2047, Coldest Years May Be Warmer Than Hottest in Past, Scientists Say,” The New York Times, October 9, 2013,

3.  Manuel García, Jr., “The Economic Function Of Energy,”
Swans, 27 February 2012,
updated re-posting:
Energy For Society In Balance With Nature
8 June 2015

4.  “Classic Maya Collapse”

5.  Manuel García, Jr., “Winter Reflections, 2012,” Swans, 17 December 2012,
updated re-posting:
Winter Reflections (recycled)
31 December 2016

6.  Matthew Auzanneau, “The short future of oil shale boom seen by Goldman Sachs,” October 8, 2013,
[A Google translation of Matthew Auzanneau’s blog in French, which focuses on oil. This post is about the Goldman Sachs involvement with the shale oil boom in North Dakota.]

7.  “Ludwig Boltzmann”


Originally published as:

Black Gold, Maximum Entropy
21 October 2013


Closing The Cycle: Energy and Climate Change

Closing The Cycle: Energy and Climate Change

Manuel Garcia, Jr.
7 December 2011



Open Cycle Industrialization

– Defining Sciences of Heat in Continuous Matter
– Heat Engines, Thermodynamic Cycles and the 1st Law
– The 2nd Law, and the Heat Gradient Across a Cycle
– Waste Heat, and the Cold Point Infinite Heat Sink
– Disorganization, Irreversibility, Entropy and the 2nd Law

Chemical Thermodynamics of the Biosphere
– The Civilization-Producing Heat Engine
– Complete Heat Engine Cycle of the Biosphere
– Industrial Heat Engine Cycle

The Global Heat Balance
– Incident Solar Energy
– Conversion of Light to Heat by the Earth
– Radiated Heat Energy
– Converting Absorbed Radiation into Atmospheric Heat
– Biosphere and the Surface Temperature of the Earth
– General Equation for the Global Heat Balance
– Sources of IR Absorbing Gases in the Atmosphere
– IR Absorption Coefficient Depends on Temperature
– Defining Global Warming


Closing The Cycle: Energy and Climate Change

(Toward Naturally Stable Energy Cycles For Enduring Societies)



Global Warming is a fact. What are we going to do about it?
This article is intended to prompt responses to that question.

The plan of this article is to proceed through a sequence of topics:
– global warming is the environmental response to open cycle industrialization
– a combination of heat flow physics and chemistry produces global warming
– the politics of deciding on forms of energy between options with uncertain futures
– international energy-climate conflicts reflect disparities in levels of development.

Global closed cycle industrialization will require equalizing levels of development:
– assistance from “high” to “low,” of value comparable to reparations for colonialism
– move from “open cycle” politics to morally “closed cycle,” domestic & international
– global warming can be seen metaphorically as the entropy of economic warfare
– the inertia of self-interest will resist halting humans’ stimulation of global warming.

Open Cycle Industrialization

Industrialization concentrates energy into mechanized work to build up civilization.

Industrialization is organized as capitalism predominantly powered by fossil fuels.

Capitalism is open loop economics in either of two forms:
– “the free market,” financial speculation by massed private capital; or
– “communism,” state-directed centrally-planned economic investment.

Open loop economics is Resource, Labor, Social and Environmental exploitation:

Resource: the extraction or seizure of assets from the environment and society:
– mining, forestry, farming, herding, land seizures, water, air, public subsidies.

Labor: purchase labor at minimum cost by exploiting human survival needs:
– fragment work into small repetitive tasks, for efficiency with low-cost low-skill labor

Social: dump wastes on and shift liabilities to society, “socialize costs” as in:
– dumping wastes, instead of recycling the usable, and reprocessing the unusable
– avoiding taxes, even through buying political influence to weaken democracy
– evading regulations, increasing risks to the public, for privatized gains
– shielding owners from responsibility by legalism, corporate personhood (or state)
– bailing out corporate bankruptcies with public funds (or by nationalization).

Environmental: expect the environment to complete the industrial cycle, to:
– endlessly supply “natural resources”
– steadily maintain society that supplies labor & profits, absorbs production & costs
– have infinite capacity to disappear wastes, both material and heat; to be a sink.

The open cycle pretends to be closed by depending on the environmental sink as:
– “free”
– infinite
– unchanging.

Global warming disproves the infinite sink assumption about the environment.

The naturally stable alternative is closed cycle industrialization:
– closed loop economics
– mutually supportive resource, labor, social and environmental interactions
– full cycle responsibility coincident with cycle ownership.

“Politics is a process by which groups of people make collective decisions.”

Energy and Climate Politics
is how we make collective decisions about closed cycle industrialization.


Defining Sciences of Heat In Continuous Matter

Thermodynamics is the science of:
heat causing, and being released by, the mechanics of chemically inert matter.

Chemical thermodynamics is the science of:
heat causing, and being released by, the mechanics of chemically reactive matter.

Thermodynamics: a full tea kettle heated so boiling water spills out, and steam flies.
Chemical thermodynamics: rocket fuel and oxidizer reacting to form a jet exhaust.

Heat Engines, Thermodynamic Cycles and the 1st Law

Heat engines produce mechanical work from absorbed heat.

A heat engine has a working fluid (gas, liquid) that makes a thermodynamic cycle:
– fluid temperature and pressure increase by absorbing heat from a heat source, it
– returns heat by doing work, exerting pressure against a movable surface (motion),
– finally, it rejects unused heat to the environment (cooling) to begin a new cycle.

Cyclic change in the internal energy of the working fluid equals the difference of:
– the heat absorbed, and
– the work done plus heat lost as waste.
– This is the 1st Law of Thermodynamics.

The 2nd Law, and the Heat Gradient Across a Cycle

Spontaneously, heat flows only:
– from higher temperature zones
– to lower temperature zones.
– This is an observable effect of the 2nd Law of Thermodynamics.

In a thermodynamic cycle typical of industrial heat engines, the working fluid is:
– heated and compressed from an initial low temperature, low pressure state, then
– expanded as it does work, cooling to that low temperature and pressure state;
– work done (+heat lost) equals the heat flow from cycle’s high to low temperatures.

Heat engines operate in either a closed or open cycle:
– closed cycle: the same mass of fluid repeats the same thermodynamic cycle,
– open cycle: a fresh mass of fluid is used for each cycle, then expelled.

Engine efficiency and output increase with a larger cycle temperature difference:
– to release more heat, burn fuels with higher chemical potential energy,
– cool the low temperature site of the thermodynamic cycle.

Waste Heat, and the Cold Point Infinite Heat Sink

Not all the heat released from the fuel enters the working fluid:
– engine efficiency is always less than 100%, often much less,
– some of the heating is lost into the mass of the engine, and conducted away,
– some of the heating is lost with the expulsion of hot exhausts from open cycles,
– some of the heating is lost into the mass of passing external coolant streams.

Where does this waste heat “conducted away,” “exhausted,” and “cooled” go?
– to an infinite heat bath, or heat sink,
– also known as an infinite heat reservoir at constant temperature.

An infinite heat bath can:
– absorb any amount of heat from a hotter body, without a rise in temperature,
– release any amount of heat to a colder body, without a drop in temperature.

The environment is assumed to be the infinite heat sink for practical heat engines.

Global warming seems to show:
the environment is a finite heat bath to industrialization’s accumulated waste heat:
– but waste chemicals are crucially involved to produce observed global warming
– so, will show later that the environment is a finite chemical thermodynamic sink.

Disorganization, Irreversibility, Entropy and the 2nd Law

Consider a thermodynamic system with three elements:
– hot source at temperature T-hot, produced by combustion (internal or external),
– heat engine,
– infinite heat bath defining the cold point, T-cold, of the thermodynamic cycle.

In its initial state, this system is highly organized:
– only a few chemical forms of matter (fuel, air, working fluid if different), and
– potential energy is well-confined in the form of chemical bonds of fuel molecules.

System organization degrades through the thermodynamic cycle (1-4):

1. At the beginning of one cycle:
– a charge of fuel and oxidizer is injected into the engine
– the working fluid is in a cool relaxed state
– none of the chemical potential energy of the charge has been used or lost.

2. During the cycle’s transition from heat absorption to working:
– chemistry produces heat by breaking up fuel molecules into numerous species
– the working fluid is hot, compressed, in motion and agitated
– waste heat has been released to the environment.

3. At the end of performing work:
– combustion has produced many species with less total chemical potential energy
– the working fluid is too cool and expanded to produce more work in this engine
– any remaining heat in the engine walls and working fluid is lost as waste.

4. The rejection of waste heat and mass to the cold infinite sink resets the cycle:
– closed: the working fluid is cooled and expanded to initial conditions,
– open: the working fluid of warm combustion products exits, replaced by cool air.

This cycle is not perfectly reversible (5-8):

5. It is not possible to recreate the initial degree of organization of:
– chemical energy stored in a well-defined single molecular species of fuel mass,
– a charge of cool air,
– working fluid in a cool relaxed state…

6. … By “starting” with:
– the end products of combustion drawn back from the cold infinite reservoir
– through the engine operating in reverse
– by applying an equivalent amount of work to it, as was produced earlier,
– (remember the losses to waste heat)…

7. … And compressing the working fluid:
– so as to convert the work being applied into heat,
– which the working fluid is to release to the hot source point
– by a sudden and spontaneous cooling, so it returns to its initial cool relaxed state.

8. Some reversibility may be possible (work into heat), but never completely:
– some of the “organization” or “information” of the initial state is irretrievably lost
– we can never recreate the initial state by a reverse cycle given the same energy
– to reconstitute the initial state from the final products requires more energy
– a reversible cycle is one with no heat lost to waste (or work lost to friction).

Entropy is the thermodynamic property that quantifies system disorganization:
– the more disorganized the state of a system, the higher its entropy.

The increase of entropy over a cycle quantifies its degree of irreversibility:
– there is zero net entropy change over a reversible cycle.

For every thermodynamic cycle of any thermodynamic system:
– the entropy always increases,
– or at a minimum remains unchanged; it never decreases (macroscopically).
– this is the 2nd Law of Thermodynamics.

One lesson in irreversibility, preserved as the memory of a famous “top egg,” is:

Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king’s horses and all the king’s men
Couldn’t put Humpty together again.

Chemical Thermodynamics of the Biosphere

The Civilization-Producing Heat Engine

Humanity is a Heat Engine that Digests Energy to Produce Civilization.

Parallel statements of the civilization-producing heat engine (1-6):

Natural energy is tapped to flow down the gradient of human energy use (1), degrading from its pristine state of sharply defined natural organization (2), as (primarily) fossilized storage and photosynthetic cycling (3), as it cascades through our industrial forms (4), to wash out into a stagnant and disorganized global heat sink (5). It is left to Nature to be both an infinite waste sink and infinite fuel/heat source, to absorb the waste output, and reset the cycle to its initial conditions (6).

Natural energy is tapped to flow down the gradient of human energy use (1), entropy increasing (2), from a “hot” reservoir and/or an initial state of concentrated energy/information (3), through humanity’s motor (4), exhausting to global warming, the “cold” reservoir, high entropy end of the cycle (5). It is left to Nature to be both an infinite waste sink and infinite fuel/heat source, to absorb the waste output, and reset the cycle to its initial conditions (6).

(1) Natural energy is tapped to flow down the gradient of human energy use,

– degrading from its pristine state of sharply defined natural organization
– entropy increasing,

– as (primarily) fossilized storage and photosynthetic cycling
– from a “hot” reservoir and/or an initial state of concentrated energy/information,

– as it cascades through our industrial forms
– through humanity’s motor,

– to wash out into a stagnant and disorganized global heat sink.
– exhausting to global warming, the “cold” reservoir, high entropy end of the cycle.

(6) It is left to Nature to be both an infinite waste sink and infinite fuel/heat source,
to absorb the waste output, and reset the cycle to its initial conditions.

Complete Heat Engine Cycle of the Biosphere

The Life Cycle has 2 complementary processes that are the reverse of each other:
– photosynthesis
– aerobic respiration

Photosynthesis (simplified reaction):
6CO2 + 6H2O + light (energy) -> C6H12O6 (sugar) + 6O2
carbon dioxide + water + solar energy -> sugar (food) + oxygen

Aerobic respiration (simplified reaction):
C6H12O6 (aqueous) + 6O2 (gas) -> 6CO2 (gas) + 6H2O (liquid) + energy
sugar (food) + oxygen (breath) -> carbon dioxide + water + metabolic energy

Autotrophs (self-feeding organisms)
– like plants, algae and many bacteria
– carry out photosynthesis
– producing organic compounds (food) from inorganic matter (CO2, H2O)
– by absorbing sunlight; or
– carry out geochemical synthesis
– producing organic compounds (food) from inorganic hydrogen compounds (H2S)
– by absorbing heat and, e.g., hydrogen sulfide from vents submerged in darkness.

Heterotrophs (organisms that feed on others)
– like animals, fungi and many bacteria
– carry out aerobic respiration
– releasing food energy and then storing it as adenosine triphosphate, ATP,
– while also producing organic and inorganic (CO2, H2O) wastes;
– ATP is stored metabolic energy, which can drive cellular processes like:
— biosynthesis (the formation of more complex molecules, like enzymes),
— locomotion (the movement of structures, like proteins, within cells), and
— transportation of molecules across cell membranes.

The Stable Energy Cycle of the Biosphere (the Life Cycle):
Autotrophs process inorganic matter and heterotroph waste into food and O2,
– food is solar energy captured in organic chemicals (carbon-hydrogen bonds).
Heterotrophs consume food and O2 to produce metabolic energy stored as ATP,
– waste products are CO2, H2O and organic matter.

Industrial Heat Engine Cycle

Industrial use of heat is loosely analogous to aerobic respiration by heterotrophs.

Combustion of methane (CH4) is shown here as a representative heat source:
CH4 + 2O2 + ignition -> CO2 + 2H2O + heat
– actually, create many C, H and N oxides, and nitric acid, by burning CH4 in air,
– we depend on nature (autotrophs) to reprocess industrial CO2, and supply fuel,
– there is no re-organizing/re-concentrating of waste heat: entropy only increases.

The Global Heat Balance

Incident Solar Energy

Insolation: solar constant (source)

Milankovitch Cycles (distance and local incident angle):
Describe the collective effects of changes in Earth’s movements on climate.
Gravitational interactions in the Solar System cause long-term periodic changes of:
the distance and orientation of the Earth with respect to the Sun:
Orbital Shape (eccentricity)
– change in the elliptic shape (variation from circular) of Earth’s orbit
– with an approximately 100,000 year period (cycle).
Axial tilt (obliquity)
– a 2.4 degree shift of angle between Earth’s axis and orbital plane, and a return,
– with a 41,000 year period.
– trend in the direction of the axis of rotation relative to fixed stars,
– with a 26,000 year period.

Transmission (filtration of insolation by atmosphere):
– atmosphere is transparent to visible light (radiation)
– absorption of ultra-violet (UV) in the high altitude ozone layer

Reflection (Earth’s albedo, its net reflection coefficient for visible light):
– ice sheets and snow (extent of the area has long term stability; Milankovitch cycle)
– clouds (extent of the area is highly variable over very short time; unpredictable)

– oceans and land absorb visible light (reflectivity is low)

The Conversion of Light to Heat by the Earth

– Atoms and molecules absorb incident light, and redistribute it in matter as heat.
– Matter holds heat as the agitation, rotation and vibration of molecules (& atoms).
– Motions of positive and negative parts of molecules launch electric waves.
– Wavelengths are set by molecule sizes and deflections: infrared radiation (IR).
– IR radiation is that portion of the electromagnetic spectrum we sense as heat.
– IR radiation is emitted by the surface of the Earth (land, oceans and organisms).
– Typical frequency of thermal radiation increases with the emitter temperature.
– Quantity of thermal (Black Body) emission increases with emitter temperature.

Radiated Heat Energy

Transmission through the atmosphere:
– gases made up of symmetric molecules (N2, O2) are transparent to IR radiation
– gases made up of atoms (Helium, Neon, Argon) are transparent to IR radiation

Absorption by the atmosphere (reflection is negligible):
– gases of asymmetric molecules (have positive and negative ends) absorb IR
– IR absorbing gases also emit thermal radiation characteristic of their temperature
– IR absorbing gases are: H2O, CO2, NOx (pollution) and volatile organic vapors
– trapped IR is continuously absorbed and radiated within the mass of atmosphere
– the greater the mass of IR absorbing gases, the greater the capacity to store heat.

Converting Absorbed Radiation into Atmospheric Heat

Kinetic theory of gases:
– Gases are mainly empty space with a huge number of small particles in motion.
– These particles are the atoms & molecules of gaseous elements & compounds.
– The faster a particle’s speed, the higher its kinetic energy, its energy of motion.
– The sum total of particle kinetic energy in a gas volume is its heat content.
– Temperature is defined as the ratio: [heat content in volume]/[mass in the volume].
– Temperature is a measure of the average kinetic energy of the particles.
– Moving atoms and molecules in a gas collide frequently, randomizing directions.
– Particles transfer kinetic energy by collision, from energetic to lethargic particles.
– Collision frequency is high, so most particles have comparable kinetic energy.
– Also, the high collision frequency diffuses a “hot spot” into a larger volume.

The positive & negative poles of asymmetric molecules make them IR antennas.
Received (absorbed) IR radiation can be stored:
– internally: bending and vibration of the atom-to-atom chemical bonds
– internally: rotations of the entire molecule (rolling, spinning, flipping)
– kinetically: linear motion through the space between particle collisions.

Molecules can transfer some of their internally stored energy during collisions:
– internally stored IR energy can be transferred into kinetic energy by collisions
– one species’ internal energy can be spread kinetically to all other gas species
– collisions distribute IR radiation absorbed by one species into uniform gas heat.

Adding vapors to the atmosphere that increase IR absorption will cause it to heat.

The Biosphere and the Surface Temperature of the Earth

Biosphere is from the top of the stratosphere (50 km above sea level) down to:
– about 5 km below the surface of the land (at 124°C, too hot for bacteria), and
– about 11 km below the surface of the oceans (just below the deepest ocean floor).

The heat content of this outer region of the Earth is affected by Milankovitch cycles.

Earth’s temperature increases with depth (land) at an average rate of 22.1°C/km
– but the flow of interior heat out through the Earth’s surface is negligible.

Global Warming refers to the average temperature of the atmosphere and oceans:
– assumed here: a layer of the biosphere bracketing “the elevation at sea level”
– from 20 km up, the top of the troposphere, including nearly all atmospheric mass
– to 10 meters below ground, which day/night and seasonally temperature cycles,
– and also the fluid mass of the oceans, whose currents redistribute heat energy;
– this layer’s temperature is set by the balance of solar heating and radiant cooling.

Earth’s average surface temperature during 1901-2000 was 13.9°C = 57°F.


T = average surface temperature of the Earth
H = the heat content in the surface layer (the essential layer of the biosphere)
C = the heat capacity of the mass of the surface layer (average material property)
ΔH = a change in the heat content of the biosphere layer (a gain or loss)

The relation of heat content to temperature is:

H = C•T

When a quantity of heat ΔH is added to the surface layer then:

H(new) = H(old) + ΔH

T(new) = T(old) + (ΔH)/C

When, in the above:
ΔH is positive, heat was added, and the new temperature is higher,
ΔH is negative, heat was lost, and the new temperature is lower.

General Equation for the Global Heat Balance

Global warming is determined by the balance of solar heating and radiant cooling.

The general equation for this global heat balance is:

ΔH = S•(1-A) – Q•(1-F)

ΔH = change in the heat content of the biosphere/surface layer
S = incident solar energy (light reaching the top of the atmosphere)
A = albedo: reflection coefficient of the Earth (0 < A < 1)
Q = radiated heat energy (infrared emitted by Earth’s surface)
F = IR absorption coefficient of the atmosphere (0 < F < 1).

A (albedo), F (IR absorption), Q (thermal emission) depend on Earth’s temperature.

Change in Biosphere Heat Content =
(Incident Solar Energy) • (1-Albedo) +
– (Radiated Heat Energy) • (1 – IR absorption coefficient of the atmosphere)

Heat flow from Earth’s interior to the surface is negligible, equal to about S/10,000.

During a period of stable climate:
ΔH = 0, incoming (light energy) and outgoing (heat energy) flows balance.
Q•(1-F) = S•(1-A), thermal emission into space = solar irradiation at Earth’s surface.

For an interval during which climate changes:
ΔH ≠ 0, incoming (light energy) and outgoing (heat energy) flows are not balanced.
Q•(1-F) > S•(1-A), thermal flux to space > solar irradiation if the Earth is cooling
Q•(1-F) < S•(1-A), thermal flux to space < solar irradiation if the Earth is heating.

Sources of IR absorbing gases in the atmosphere

Aerobic respiration
Terrestrial emission of organic plumes from:
– volcanic and geothermal venting
– methane outgassing caused by rising temperature (tundras and oceans)
Industrial emission of organic plumes from:
– chemical, mining and manufacturing facilities
– concentrations of agricultural and livestock activities
Air pollution from combustion-derived heat energy for industrialized civilization.

IR absorption coefficient depends on temperature

Evaporation of liquid H2O, and organic vapor plumes increase with temperature:
– cloud dynamics and distribution is the most contentious aspect of climate models
– terrestrial outgassing of IR absorbing gases increases with Earth’s temperature.
Hotter wetter eras may also be cloudier with both higher albedo and IR retention,
– compensating effects, which slow rate of heating.
Colder drier, large ice sheet eras may have higher albedo and lower IR retention,
– mutually amplifying effects, which accelerate rate of cooling.

Defining Global Warming

“The environment” is the 20-31 km thick surface-of-the-Earth layer of the biosphere.

Global warming shows that:
– the environment is not an infinite chemical thermodynamic sink,
– it cannot endlessly absorb waste heat and IR absorbing chemicals isothermally.

Global warming is:
– the increase of entropy in the environment.
– the degradation of organization of the environment.


The above is the outline of the physical science half of my never-to-be-finished book on the politics of climate change. Some of the energy-use policies and technologies that could be implemented in response to climate change were described in my article

The Economic Function Of Energy
27 February 2012

“The Economic Function Of Energy” covers the topics listed as the third and fourth lines itemized in the preface (at the start).

The last four lines itemized in the preface are discussed in a haphazard fashion in several of my articles posted on the Internet (see or, most recently in “AGW And Malthusian End Times.”

I think that today everybody understands that Anthropogenic Global Warming will not be addressed, nor resource and energy conservation practiced, until capitalism is rejected globally, and that humanity will never reject fossil-fueled capitalism.